// Numbas version: finer_feedback_settings {"name": "Chemical Thermodynamics: Logarithm Practice - General ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Chemical Thermodynamics: Logarithm Practice - General ", "tags": [], "metadata": {"description": "
Public
", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "Calculate $x$ in the following expressions (you should try to do this without using a calculator, if possible):
", "advice": "You can think of a logarithm as a question, written symbolically - the expression:
\n$\\mathrm{log}_x(y)$
\nmeans \"$x$ raised to which power (or 'index') equals $y$ ?\".
\n\nThe answer to this question is the value of our logarithm, so if $x^z=y$, then the answer to our question would be $z$, and so this would also be the value of our logarithm:
\n$\\mathrm{log}_x(y)=z$ .
\n\n\n\nFor the first problem, we must calculate the value of a logarithm:
\n$x=\\mathrm{log_{_{\\space\\var{nat}}}(\\var{ans2})}$ .
\n\nTo find this, we must simply answer the question \"$\\var{nat}$ raised to which power equals $\\var{ans2}$ ?\" .
\nYou will probably know that $\\var{nat}^{\\var{expo}}=\\var{ans2}$ , so the answer to our question is $\\var{expo}$ . Thus,
\n$x=\\mathrm{log_{_{\\space\\var{nat}}}(\\var{ans2})}=\\var{expo}$ .
\n\n\n\nFor the second problem, $x$ is not the value of a logarithm; it is the base of one:
\n$\\mathrm{log}_{\\space x}\\mathrm{(\\var{bigint})=2}$ .
\n\nTo find $x$, let's consider the question the logarithm represents: \"$x$ raised to which power equals $\\var{bigint}$ ?\" .
\nAs we are given the value of the logarithm, we know the answer to this question: $2$ .
\nThis is the \"power\" mentioned in the question, so we actually know that: \"$x$ raised to power of $2$ equals $\\var{bigint}$\", i.e. $x^2=\\var{bigint}$
\nThus, $x=\\sqrt{\\var{bigint}}=\\var{int}$ .
\n\n\n\nFor the third problem, we must calculate the value of a logarithm:
\n$x=\\mathrm{log}_{\\space y}\\mathrm{(1)}$ .
\n\nTo find this, we must answer the question \"$y$ raised to which power equals $1$ ?\" .
\nWe don't know the value of $y$, but thankfully, the value of any number raised to the power of zero is always equal to $1$, meaning that $y^0=1$ ; so, the answer to our question is simply $0$ . Thus,
\n$x=\\mathrm{log}_{\\space y}\\mathrm{(1)}=0$ .
\n\nNote: This means that any logarithm with an argument of $1$ will have a value of $0$ .
\n\nFor the fourth problem, we must calculate the value of a logarithm:
\n$x=\\mathrm{log}_{\\space y}(y)$ .
\n\nThis problem relies on a similar trick to its predecessor.
\nTo find $x$, we must answer the question \"$y$ raised to which power equals $y$ ?\" .
\nWe don't know the value of $y$, but thankfully, the value of any number raised to the power of one is always equal to the original number, meaning that $y^1=y$ ; so, the answer to our question is simply $1$ . Thus,
\n$x=\\mathrm{log}_{\\space y}(y)=1$ .
\n\nNote: This means that any logarithm with an argument equal to the base will have a value of $1$ .
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "{nat}^({expo})", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "random(1 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "nat": {"name": "nat", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "expo": {"name": "expo", "group": "Ungrouped variables", "definition": "random(2 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "bigint": {"name": "bigint", "group": "Ungrouped variables", "definition": "int^2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["int", "bigint", "nat", "expo", "ans2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=\\mathrm{log_{_{\\space\\var{nat}}}(\\var{ans2})}$
\n[[0]]
\n\n\n$\\mathrm{log}_{\\space x}\\mathrm{(\\var{bigint})=2}$
\n[[1]]
\n\n\nHint: For the following two questions, you do not need to (and cannot, anyways) work out the value of $y$ .
\n\n\n$x=\\mathrm{log}_{\\space y}\\mathrm{(1)}$ , where $y$ is an unknown number.
\n[[2]]
\n\n\n$x=\\mathrm{log}_{\\space y}(y)$ , where $y$ is an unknown number.
\n[[3]]
\n\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "expo", "maxValue": "expo", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "int", "maxValue": "int", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1", "maxValue": "1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}], "resources": []}]}], "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}]}