// Numbas version: finer_feedback_settings {"name": "LM01 Matrices dimensions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "LM01 Matrices dimensions", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The following questions are designed to explore the dimensions of matrices and what you can and can't do with matrices of differing dimensions.

", "advice": "

Rows and Columns

\n

The convention in Matrix notation is to give the dimensions of a matrix in the order \"rows\" by \"columns\".

\n

For $\\var{Dimensions}$ there are $\\var{rows[0]}$ rows and $\\var{columns[0]}$ columns. We write this as \"this is a $\\var{rows[0]}$X$\\var{columns[0]}$ matrix\".

\n

When can you add and subtract matrices?

\n

Two Matrices can be added or subtracted if they have the exact same dimensions as each other. For example $\\var{canadd1}$ and $\\var{canadd2}$ are both $\\var{rows[1]}$X$\\var{columns[1]}$ matrices and therefore can be added (or subtracted). However, $\\var{cantaddsub1}$ is a $\\var{rows[3]}$X$\\var{columns[3]}$ matrix and $\\var{cantaddsub2}$ is a $\\var{rows[3]}$X$\\var{columns[3]+1}$ matrix. Since these dimensions are different these matrices cannot be added or subtracted.

\n

Multiplying Dimensions

\n

When you multiply two matrices together the number of columns in the first matrix must match the number of rows in the second matrix. For example in the calculation $\\var{Mult3}$X$\\var{Mult4}$ the first matrix has $3$ columns and the second matrix has $3$ rows so they can be multiplied. In addition to this when multiplying two matrices (that can be multiplied) the result will be a single matrix that has the number of rows of the first matrix and the number of columns of the second matrix. In this example the first matrix has $\\var{rows[0]}$ rows and the second matrix has $\\var{columns[1]}$ columns, so the result of multiplying the two matrices will be a $\\var{rows[0]}$X$\\var{columns[1]}$ matrix.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"rows": {"name": "rows", "group": "Ungrouped variables", "definition": "repeat(random(1..4),6)", "description": "", "templateType": "anything", "can_override": false}, "columns": {"name": "columns", "group": "Ungrouped variables", "definition": "repeat(random(1..4),6)", "description": "", "templateType": "anything", "can_override": false}, "dimensions": {"name": "dimensions", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[0]),rows[0]))", "description": "", "templateType": "anything", "can_override": false}, "canadd1": {"name": "canadd1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),rows[1]))", "description": "", "templateType": "anything", "can_override": false}, "canadd2": {"name": "canadd2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),rows[1]))", "description": "", "templateType": "anything", "can_override": false}, "cansub1": {"name": "cansub1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[2]),rows[2]))", "description": "", "templateType": "anything", "can_override": false}, "cansub2": {"name": "cansub2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[2]),rows[2]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub1": {"name": "cantaddsub1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[3]),rows[3]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub2": {"name": "cantaddsub2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[3]+1),rows[3]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub3": {"name": "cantaddsub3", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),rows[3]),columns[3]))", "description": "", "templateType": "anything", "can_override": false}, "Mult1": {"name": "Mult1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[4]),rows[4]))", "description": "", "templateType": "anything", "can_override": false}, "Mult2": {"name": "Mult2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[5]),rows[5]))", "description": "", "templateType": "anything", "can_override": false}, "correctanswertomult": {"name": "correctanswertomult", "group": "Ungrouped variables", "definition": "IF(columns[4]=rows[5],\"yes\",\"no\")", "description": "", "templateType": "anything", "can_override": false}, "incorrectanswertomult": {"name": "incorrectanswertomult", "group": "Ungrouped variables", "definition": "IF(columns[4]=rows[5],\"no\",\"yes\")", "description": "", "templateType": "anything", "can_override": false}, "Mult3": {"name": "Mult3", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),3),rows[0]))", "description": "", "templateType": "anything", "can_override": false}, "Mult4": {"name": "Mult4", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),3))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "(rows[0]>1 OR columns[0]>1) AND (rows[3]<>columns[3])", "maxRuns": 100}, "ungrouped_variables": ["rows", "columns", "dimensions", "canadd1", "canadd2", "cansub1", "cansub2", "cantaddsub1", "cantaddsub2", "cantaddsub3", "Mult1", "Mult2", "correctanswertomult", "incorrectanswertomult", "Mult3", "Mult4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Rows and Columns", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What are the dimensions of the following matrix?

\n

$\\var{dimensions}$

\n

[[0]]X[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Rows", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{rows[0]}", "maxValue": "{rows[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Columns", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{columns[0]}", "maxValue": "{columns[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "m_n_2", "useCustomName": true, "customName": "When can you add and subtract matrices?", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following calculations are defined?

\n

(Indicate ALL possible answers by ticking the corresponding box(es))

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "0", "minAnswers": 0, "maxAnswers": "2", "warningType": "warn", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": ["$\\var{canadd1}+\\var{canadd2}\\\\$", "$\\var{cansub1}-\\var{cansub2}\\\\$", "$\\var{cantaddsub1}-\\var{cantaddsub2}\\\\$", "$\\var{cantaddsub1}+\\var{cantaddsub3}\\\\$"], "matrix": ["1", "1", "0", "0"], "distractors": ["", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "When can you multiply two matrices?", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Is this calculation defined?

\n

$\\var{Mult1}$X$\\var{Mult2}$

\n

[[0]]

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "Yesno", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{correctanswertomult}", "{incorrectanswertomult}"], "matrix": ["1", 0], "distractors": ["", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Dimensions of multiplication answer", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What will be the dimensions of the matrix you get when you multiply these two matrices?

\n

$\\var{Mult3}$X$\\var{Mult4}$.

\n

\n

[[0]]X[[1]]

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Rows", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "rows[0]", "maxValue": "rows[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Cols", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "columns[1]", "maxValue": "columns[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "resources": []}]}], "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}