// Numbas version: finer_feedback_settings {"name": "Chemical Thermodynamics: Equilibrium Partial Pressures from Gibbs Free Energy of Formation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Chemical Thermodynamics: Equilibrium Partial Pressures from Gibbs Free Energy of Formation", "tags": [], "metadata": {"description": "

Public

", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "", "advice": "

The reaction of diatomic iodine and diatomic hydrogen to form hydrogen iodide is given by:

\n

$\\mathrm{I_2\\space + \\space H_2 \\space \\rightleftharpoons \\space 2HI}$ .

\n

\n

As the reaction proceeds from the initial mixture, the partial pressures of the reactants will decrease and that of the product will increase. Let's denote the change in partial pressure of $\\mathrm{I_2}$ (or $\\mathrm{H_2}$) or as $x$ (with units of $\\mathrm{bar}$), from the initial partial pressure to the final partial pressure at equilibrium. Note that there is initially no $\\mathrm{HI}$ present, so it will have an initial partial pressure of $\\mathrm{0 \\space bar}$ in the mixture. As two moles of $\\mathrm{HI}$ are formed for every one mole of $\\mathrm{I_2}$ used, the pressure increase for $\\mathrm{HI}$ will be $2x$.

\n

\n

\n

Thus, we can tabulate the expressions for the initial partial pressure, final partial pressure, and partial pressure change for each species in the reaction:

\n

\n

\n

\n

                                                                  $\\mathrm{I_2}$                          $\\mathrm{H_2}$                  $\\mathrm{HI}$

\n

\n

$\\mathrm{Initial \\space Pressure\\space (bar)}$              $\\mathrm{\\var{i2}}$                        $\\mathrm{\\var{h2}}$                    $\\mathrm{0}$

\n

\n

$\\mathrm{Pressure \\space Change\\space (bar)}$           $-x$                       $-x$                $+2x$

\n

\n

$\\mathrm{Final \\space Pressure\\space (bar)}$          $(\\mathrm{\\var{i2}}-x)$          $(\\mathrm{\\var{h2}}-x)$           $2x$

\n

\n

\n

\n

Now that we have an expression for each of our final partial pressures, we can substitute these into an expression for the equilibrium constant, $\\mathrm{K}$:

\n

\n

$\\mathrm{K=\\frac{p_{HI}^2}{p_{I_2}p_{H_2}}}$

\n

\n

$\\Rightarrow\\space\\space\\space \\mathrm{K=}\\frac{(2x)^2}{(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)}=\\frac{4\\space x^2}{(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)}$ .

\n

\n

\n

Because there are $x^2$ and $x$ terms, we can rearrange this expression into a quadratic form; $ax^2+bx+c=0$

\n

\n

Note: It is best to keep $\\mathrm{K}$ as an algebraic term during rearranging, then substitue its value in afterwards; thus, we do not need to calculate its value quite yet.

\n

\n

This rearrangement is given as follows:

\n

\n

$\\mathrm{K=}\\frac{4\\space x^2}{(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)}$

\n

\n

$\\Rightarrow\\space\\space\\space \\mathrm{K}(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)=4x^2$

\n

\n

$\\Rightarrow\\space\\space\\space \\mathrm{K}([\\var{i2}\\times\\var{h2}]+[-\\var{h2}x]+[-\\var{i2}x]+x^2)=4x^2$

\n

\n

$\\Rightarrow\\space\\space\\space \\mathrm{K}([\\var{i2}\\times\\var{h2}]+[-\\var{h2}-\\var{i2}]x+x^2)=4x^2$

\n

\n

$\\Rightarrow\\space\\space\\space \\mathrm{K}[\\var{i2}\\times\\var{h2}]+\\mathrm{K}[-\\var{h2}-\\var{i2}]x+\\mathrm{K}x^2=4x^2$

\n

\n

$\\Rightarrow\\space\\space\\space \\mathrm{K}[\\var{i2}\\times\\var{h2}]+\\mathrm{K}[-\\var{h2}-\\var{i2}]x+[\\mathrm{K}-4]x^2=0$

\n

\n

$\\Rightarrow\\space\\space\\space [\\mathrm{K}-4]x^2+\\mathrm{K}[-\\var{h2}-\\var{i2}]x+\\mathrm{K}[\\var{i2}\\times\\var{h2}]=0$ .

\n

\n

We now have our equation in the quadratic form; thus, by comparing this equation with the general expression for the quadratic form $(ax^2+bx+c=0)$, we can deduce that, for our equation:

\n

\n

$a=\\mathrm{K}-4$ ,

\n

\n

$b=\\mathrm{K}[-\\var{h2}-\\var{i2}]$ ,

\n

\n

$c=\\mathrm{K}[\\var{i2}\\times\\var{h2}]$ .

\n

\n

\n

This is an appropriate point at which to calculate the value of $\\mathrm{K}$. We do this using the following equation, which we rearrange:

\n

$\\mathrm{\\Delta G^\\circ=-RTln(K)}$

\n

\n

$\\mathrm{\\Rightarrow\\space\\space\\space ln(K)=-\\frac{{\\Delta G^\\circ}}{RT}}$

\n

\n

$\\mathrm{\\Rightarrow\\space\\space\\space K=exp(-\\frac{{\\Delta G^\\circ}}{RT})}$ .

\n

\n

Before we substitute in our values, we must consider $\\mathrm{\\Delta G^\\circ}$ carefully - we have been given $\\mathrm{{\\Delta G^\\circ}_f=\\var{gibbs}\\space kJ\\space mol^{-1}}$, the standard Gibbs free energy of formation of $\\mathrm{HI}$, i.e. the Gibbs free energy change accompanying the formation of one mole of $\\mathrm{HI}$, but our reaction yields two moles of $\\mathrm{HI}$. Thus, we must double the given value, then of course convert it from $\\mathrm{kJ}$ to $\\mathrm{J}$ by multiplying by one thousand, to $\\mathrm{\\Delta G^\\circ =\\var{g2} \\space J \\space mol^{-1}}$.

\n

Noting that we are also given the temperature of the system, $\\mathrm{T=\\var{temp}\\space K}$, we can now substitute our values into our equation:

\n

$\\mathrm{K=exp(-\\frac{{\\Delta G^\\circ}}{RT})}$

\n

\n

$\\mathrm{\\Rightarrow\\space\\space\\space K=exp(-\\frac{{\\var{g2}}}{8.314\\times \\var{temp}})=(\\var{(sigformat(k,3))}\\cdots)}$ .

\n

\n

\n

Thus, we can calculate actual values for $a$, $b$, and $c$:

\n

$a=\\mathrm{K}-4=(\\var{(sigformat(k,3))}\\cdots)-4=(\\var{(sigformat(a,3))}\\cdots)$ ,

\n

\n

$b=\\mathrm{K}[-\\var{h2}-\\var{i2}]=(\\var{(sigformat(k,3))}\\cdots)\\times[-\\var{h2}-\\var{i2}]=(\\var{(sigformat(b,3))}\\cdots)$ ,

\n

\n

$c=\\mathrm{K}[\\var{i2}\\times\\var{h2}]=(\\var{(sigformat(k,3))}\\cdots)\\times\\var{i2}\\times\\var{h2}=(\\var{(sigformat(c,3))}\\cdots)$ .

\n

\n

\n

Now, we can substitute these values into the quadratic formula to solve for $x$:

\n

\n

$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$

\n

\n

$\\Rightarrow\\space\\space\\space x=\\frac{-(\\var{(sigformat(b,3))}\\cdots)\\pm\\sqrt{(\\var{(sigformat(b,3))}\\cdots)^2-[4\\times (\\var{(sigformat(a,3))}\\cdots)\\times (\\var{(sigformat(c,3))}\\cdots)]}}{2\\times(\\var{(sigformat(a,3))}\\cdots)}$ .

\n

\n

As is standard when using the quadratic formula, we obtain two solutions:

\n

\n

$x_+=\\var{(sigformat(xplus,3))}\\space\\mathrm{bar}$ ,               $x_-=\\var{(sigformat(xminus,3))}\\space\\mathrm{bar}$ .

\n

\n

\n

Bearing in mind that $x$ represents the decrease in partial pressure of each reactant, we can note that $x_+$ is greater than the initial partial pressures of our reactants, meaning that a decrease of $x_+$ would result in negative partial pressures, which are impossible; thus, $x_+$ must be a 'non-physical' solution and $x_-$ must be the solution we want - the actual decrease in the partial pressures of the iodine and hydrogen gases. We will hence equate $x$ to $x_-$ , so $x=\\var{(sigformat(xminus,3))}\\space\\mathrm{bar}$ .

\n

\n

Finally, by referring back to the last row of our table, we can calculate the final partial pressure of each of the three species in the reaction:

\n

\n

$\\mathrm{p_{f(I_2)}}=\\var{i2}-x=\\var{i2}-\\var{(sigformat(xminus,3))}=\\mathrm{\\var{(sigformat(finali2,3))}\\space bar}$ ,

\n

\n

$\\mathrm{p_{f(H_2)}}=\\var{h2}-x=\\var{h2}-\\var{(sigformat(xminus,3))}=\\mathrm{\\var{(sigformat(finalh2,3))}\\space bar}$ ,

\n

\n

$\\mathrm{p_{f(HI)}}=2x=2\\times\\var{(sigformat(xminus,3))}=\\mathrm{\\var{(sigformat(finalhi,3))}\\space bar}$ .

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"i2": {"name": "i2", "group": "Ungrouped variables", "definition": "random(0.1 .. 0.9#0.1)", "description": "", "templateType": "randrange", "can_override": false}, "h2": {"name": "h2", "group": "Ungrouped variables", "definition": "random(0.1 .. 0.9#0.1)", "description": "", "templateType": "randrange", "can_override": false}, "temp": {"name": "temp", "group": "Ungrouped variables", "definition": "random(650 .. 750#1)", "description": "", "templateType": "randrange", "can_override": false}, "gibbs": {"name": "gibbs", "group": "Ungrouped variables", "definition": "-11.57", "description": "", "templateType": "number", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "exp(-(g2)/(8.314*temp))", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "k-4", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "-k*(i2+h2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "k*i2*h2", "description": "", "templateType": "anything", "can_override": false}, "xplus": {"name": "xplus", "group": "Ungrouped variables", "definition": "(-b+sqrt((b^2)-(4*a*c)))/(2*a)", "description": "", "templateType": "anything", "can_override": false}, "xminus": {"name": "xminus", "group": "Ungrouped variables", "definition": "(-b-sqrt((b^2)-(4*a*c)))/(2*a)", "description": "", "templateType": "anything", "can_override": false}, "finali2": {"name": "finali2", "group": "Ungrouped variables", "definition": "i2-xminus", "description": "", "templateType": "anything", "can_override": false}, "finalh2": {"name": "finalh2", "group": "Ungrouped variables", "definition": "h2-xminus", "description": "", "templateType": "anything", "can_override": false}, "finalhi": {"name": "finalhi", "group": "Ungrouped variables", "definition": "2*xminus", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Ungrouped variables", "definition": "gibbs*2000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "1000"}, "ungrouped_variables": ["i2", "h2", "temp", "gibbs", "k", "a", "b", "c", "xplus", "xminus", "finali2", "finalh2", "finalhi", "g2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

In an experiment, an initial mixture of $\\mathrm{\\var{i2}\\space bar}$ $\\mathrm{I_2}$ and $\\mathrm{\\var{h2}\\space bar}$ $\\mathrm{H_2}$ reacts to form an equilibrium mixture of the two reactant gases and their product, $\\mathrm{HI}$, at $\\mathrm{\\var{temp}\\space K}$. The standard Gibbs free energy of formation of $\\mathrm{HI}$ at $\\mathrm{\\var{temp}\\space K}$ is $\\mathrm{\\var{gibbs}\\space kJ\\space mol^{-1}}$.

\n

\n


What is the equilibrium partial pressure of each of the three gases?

\n

\n

$\\mathrm{I_2}$ : [[0]] $\\mathrm{bar}$

\n

\n

$\\mathrm{H_2}$ : [[1]] $\\mathrm{bar}$

\n

\n

$\\mathrm{HI}$ : [[2]] $\\mathrm{bar}$ .

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "finali2-(finali2/200)", "maxValue": "finali2+(finali2/200)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "finalh2-(finalh2/200)", "maxValue": "finalh2+(finalh2/200)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "finalhi-(finalhi/200)", "maxValue": "finalhi+(finalhi/200)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}], "resources": []}]}], "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}]}