// Numbas version: finer_feedback_settings {"name": "Chemical Thermodynamics: Equilibrium Partial Pressures from Gibbs Free Energy of Formation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Chemical Thermodynamics: Equilibrium Partial Pressures from Gibbs Free Energy of Formation", "tags": [], "metadata": {"description": "
Public
", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "", "advice": "The reaction of diatomic iodine and diatomic hydrogen to form hydrogen iodide is given by:
\n$\\mathrm{I_2\\space + \\space H_2 \\space \\rightleftharpoons \\space 2HI}$ .
\n\nAs the reaction proceeds from the initial mixture, the partial pressures of the reactants will decrease and that of the product will increase. Let's denote the change in partial pressure of $\\mathrm{I_2}$ (or $\\mathrm{H_2}$) or as $x$ (with units of $\\mathrm{bar}$), from the initial partial pressure to the final partial pressure at equilibrium. Note that there is initially no $\\mathrm{HI}$ present, so it will have an initial partial pressure of $\\mathrm{0 \\space bar}$ in the mixture. As two moles of $\\mathrm{HI}$ are formed for every one mole of $\\mathrm{I_2}$ used, the pressure increase for $\\mathrm{HI}$ will be $2x$.
\n\n\nThus, we can tabulate the expressions for the initial partial pressure, final partial pressure, and partial pressure change for each species in the reaction:
\n\n\n\n$\\mathrm{I_2}$ $\\mathrm{H_2}$ $\\mathrm{HI}$
\n\n$\\mathrm{Initial \\space Pressure\\space (bar)}$ $\\mathrm{\\var{i2}}$ $\\mathrm{\\var{h2}}$ $\\mathrm{0}$
\n\n$\\mathrm{Pressure \\space Change\\space (bar)}$ $-x$ $-x$ $+2x$
\n\n$\\mathrm{Final \\space Pressure\\space (bar)}$ $(\\mathrm{\\var{i2}}-x)$ $(\\mathrm{\\var{h2}}-x)$ $2x$
\n\n\n\nNow that we have an expression for each of our final partial pressures, we can substitute these into an expression for the equilibrium constant, $\\mathrm{K}$:
\n\n$\\mathrm{K=\\frac{p_{HI}^2}{p_{I_2}p_{H_2}}}$
\n\n$\\Rightarrow\\space\\space\\space \\mathrm{K=}\\frac{(2x)^2}{(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)}=\\frac{4\\space x^2}{(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)}$ .
\n\n\nBecause there are $x^2$ and $x$ terms, we can rearrange this expression into a quadratic form; $ax^2+bx+c=0$
\n\nNote: It is best to keep $\\mathrm{K}$ as an algebraic term during rearranging, then substitue its value in afterwards; thus, we do not need to calculate its value quite yet.
\n\nThis rearrangement is given as follows:
\n\n$\\mathrm{K=}\\frac{4\\space x^2}{(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)}$
\n\n$\\Rightarrow\\space\\space\\space \\mathrm{K}(\\mathrm{\\var{i2}}-x)(\\mathrm{\\var{h2}}-x)=4x^2$
\n\n$\\Rightarrow\\space\\space\\space \\mathrm{K}([\\var{i2}\\times\\var{h2}]+[-\\var{h2}x]+[-\\var{i2}x]+x^2)=4x^2$
\n\n$\\Rightarrow\\space\\space\\space \\mathrm{K}([\\var{i2}\\times\\var{h2}]+[-\\var{h2}-\\var{i2}]x+x^2)=4x^2$
\n\n$\\Rightarrow\\space\\space\\space \\mathrm{K}[\\var{i2}\\times\\var{h2}]+\\mathrm{K}[-\\var{h2}-\\var{i2}]x+\\mathrm{K}x^2=4x^2$
\n\n$\\Rightarrow\\space\\space\\space \\mathrm{K}[\\var{i2}\\times\\var{h2}]+\\mathrm{K}[-\\var{h2}-\\var{i2}]x+[\\mathrm{K}-4]x^2=0$
\n\n$\\Rightarrow\\space\\space\\space [\\mathrm{K}-4]x^2+\\mathrm{K}[-\\var{h2}-\\var{i2}]x+\\mathrm{K}[\\var{i2}\\times\\var{h2}]=0$ .
\n\nWe now have our equation in the quadratic form; thus, by comparing this equation with the general expression for the quadratic form $(ax^2+bx+c=0)$, we can deduce that, for our equation:
\n\n$a=\\mathrm{K}-4$ ,
\n\n$b=\\mathrm{K}[-\\var{h2}-\\var{i2}]$ ,
\n\n$c=\\mathrm{K}[\\var{i2}\\times\\var{h2}]$ .
\n\n\nThis is an appropriate point at which to calculate the value of $\\mathrm{K}$. We do this using the following equation, which we rearrange:
\n$\\mathrm{\\Delta G^\\circ=-RTln(K)}$
\n\n$\\mathrm{\\Rightarrow\\space\\space\\space ln(K)=-\\frac{{\\Delta G^\\circ}}{RT}}$
\n\n$\\mathrm{\\Rightarrow\\space\\space\\space K=exp(-\\frac{{\\Delta G^\\circ}}{RT})}$ .
\n\nBefore we substitute in our values, we must consider $\\mathrm{\\Delta G^\\circ}$ carefully - we have been given $\\mathrm{{\\Delta G^\\circ}_f=\\var{gibbs}\\space kJ\\space mol^{-1}}$, the standard Gibbs free energy of formation of $\\mathrm{HI}$, i.e. the Gibbs free energy change accompanying the formation of one mole of $\\mathrm{HI}$, but our reaction yields two moles of $\\mathrm{HI}$. Thus, we must double the given value, then of course convert it from $\\mathrm{kJ}$ to $\\mathrm{J}$ by multiplying by one thousand, to $\\mathrm{\\Delta G^\\circ =\\var{g2} \\space J \\space mol^{-1}}$.
\nNoting that we are also given the temperature of the system, $\\mathrm{T=\\var{temp}\\space K}$, we can now substitute our values into our equation:
\n$\\mathrm{K=exp(-\\frac{{\\Delta G^\\circ}}{RT})}$
\n\n$\\mathrm{\\Rightarrow\\space\\space\\space K=exp(-\\frac{{\\var{g2}}}{8.314\\times \\var{temp}})=(\\var{(sigformat(k,3))}\\cdots)}$ .
\n\n\nThus, we can calculate actual values for $a$, $b$, and $c$:
\n$a=\\mathrm{K}-4=(\\var{(sigformat(k,3))}\\cdots)-4=(\\var{(sigformat(a,3))}\\cdots)$ ,
\n\n$b=\\mathrm{K}[-\\var{h2}-\\var{i2}]=(\\var{(sigformat(k,3))}\\cdots)\\times[-\\var{h2}-\\var{i2}]=(\\var{(sigformat(b,3))}\\cdots)$ ,
\n\n$c=\\mathrm{K}[\\var{i2}\\times\\var{h2}]=(\\var{(sigformat(k,3))}\\cdots)\\times\\var{i2}\\times\\var{h2}=(\\var{(sigformat(c,3))}\\cdots)$ .
\n\n\nNow, we can substitute these values into the quadratic formula to solve for $x$:
\n\n$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$
\n\n$\\Rightarrow\\space\\space\\space x=\\frac{-(\\var{(sigformat(b,3))}\\cdots)\\pm\\sqrt{(\\var{(sigformat(b,3))}\\cdots)^2-[4\\times (\\var{(sigformat(a,3))}\\cdots)\\times (\\var{(sigformat(c,3))}\\cdots)]}}{2\\times(\\var{(sigformat(a,3))}\\cdots)}$ .
\n\nAs is standard when using the quadratic formula, we obtain two solutions:
\n\n$x_+=\\var{(sigformat(xplus,3))}\\space\\mathrm{bar}$ , $x_-=\\var{(sigformat(xminus,3))}\\space\\mathrm{bar}$ .
\n\n\nBearing in mind that $x$ represents the decrease in partial pressure of each reactant, we can note that $x_+$ is greater than the initial partial pressures of our reactants, meaning that a decrease of $x_+$ would result in negative partial pressures, which are impossible; thus, $x_+$ must be a 'non-physical' solution and $x_-$ must be the solution we want - the actual decrease in the partial pressures of the iodine and hydrogen gases. We will hence equate $x$ to $x_-$ , so $x=\\var{(sigformat(xminus,3))}\\space\\mathrm{bar}$ .
\n\nFinally, by referring back to the last row of our table, we can calculate the final partial pressure of each of the three species in the reaction:
\n\n$\\mathrm{p_{f(I_2)}}=\\var{i2}-x=\\var{i2}-\\var{(sigformat(xminus,3))}=\\mathrm{\\var{(sigformat(finali2,3))}\\space bar}$ ,
\n\n$\\mathrm{p_{f(H_2)}}=\\var{h2}-x=\\var{h2}-\\var{(sigformat(xminus,3))}=\\mathrm{\\var{(sigformat(finalh2,3))}\\space bar}$ ,
\n\n$\\mathrm{p_{f(HI)}}=2x=2\\times\\var{(sigformat(xminus,3))}=\\mathrm{\\var{(sigformat(finalhi,3))}\\space bar}$ .
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"i2": {"name": "i2", "group": "Ungrouped variables", "definition": "random(0.1 .. 0.9#0.1)", "description": "", "templateType": "randrange", "can_override": false}, "h2": {"name": "h2", "group": "Ungrouped variables", "definition": "random(0.1 .. 0.9#0.1)", "description": "", "templateType": "randrange", "can_override": false}, "temp": {"name": "temp", "group": "Ungrouped variables", "definition": "random(650 .. 750#1)", "description": "", "templateType": "randrange", "can_override": false}, "gibbs": {"name": "gibbs", "group": "Ungrouped variables", "definition": "-11.57", "description": "", "templateType": "number", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "exp(-(g2)/(8.314*temp))", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "k-4", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "-k*(i2+h2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "k*i2*h2", "description": "", "templateType": "anything", "can_override": false}, "xplus": {"name": "xplus", "group": "Ungrouped variables", "definition": "(-b+sqrt((b^2)-(4*a*c)))/(2*a)", "description": "", "templateType": "anything", "can_override": false}, "xminus": {"name": "xminus", "group": "Ungrouped variables", "definition": "(-b-sqrt((b^2)-(4*a*c)))/(2*a)", "description": "", "templateType": "anything", "can_override": false}, "finali2": {"name": "finali2", "group": "Ungrouped variables", "definition": "i2-xminus", "description": "", "templateType": "anything", "can_override": false}, "finalh2": {"name": "finalh2", "group": "Ungrouped variables", "definition": "h2-xminus", "description": "", "templateType": "anything", "can_override": false}, "finalhi": {"name": "finalhi", "group": "Ungrouped variables", "definition": "2*xminus", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Ungrouped variables", "definition": "gibbs*2000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "1000"}, "ungrouped_variables": ["i2", "h2", "temp", "gibbs", "k", "a", "b", "c", "xplus", "xminus", "finali2", "finalh2", "finalhi", "g2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "In an experiment, an initial mixture of $\\mathrm{\\var{i2}\\space bar}$ $\\mathrm{I_2}$ and $\\mathrm{\\var{h2}\\space bar}$ $\\mathrm{H_2}$ reacts to form an equilibrium mixture of the two reactant gases and their product, $\\mathrm{HI}$, at $\\mathrm{\\var{temp}\\space K}$. The standard Gibbs free energy of formation of $\\mathrm{HI}$ at $\\mathrm{\\var{temp}\\space K}$ is $\\mathrm{\\var{gibbs}\\space kJ\\space mol^{-1}}$.
\n\n
What is the equilibrium partial pressure of each of the three gases?
$\\mathrm{I_2}$ : [[0]] $\\mathrm{bar}$
\n\n$\\mathrm{H_2}$ : [[1]] $\\mathrm{bar}$
\n\n$\\mathrm{HI}$ : [[2]] $\\mathrm{bar}$ .
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "finali2-(finali2/200)", "maxValue": "finali2+(finali2/200)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "finalh2-(finalh2/200)", "maxValue": "finalh2+(finalh2/200)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "finalhi-(finalhi/200)", "maxValue": "finalhi+(finalhi/200)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}], "resources": []}]}], "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}]}