// Numbas version: finer_feedback_settings {"name": "17.h BIDMAS - brackets, addition, and multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "17.h BIDMAS - brackets, addition, and multiplication", "tags": [], "metadata": {"description": "
Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case the first thing that is in the question is Brackets.
\nFirst work through the expression from left to right, evaluating all brackets. Then work through the expression evaluating all indicies. Go through the expression again and evaluate all multiplication and divisions. Finally you should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[alwaysTimes,unitPower]{{a}+({b}+{c})^{P}*{d}}\\]
\n\\[=\\simplify[alwaysTimes,unitPower]{{a}+({b+c})^{P}*{d}}\\]
\n\\[=\\simplify[alwaysTimes,unitPower]{{a}+{(b+c)^P}*{d}}\\]
\n\\[=\\simplify[alwaysTimes,unitPower]{{a}+{(b+c)^P*d}}\\]
\n\\[=\\var{a+(b+c)^P*d}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-(6+b)..(6-b) except 0 except -b)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9 except 0 except 1 except -1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "if(P=1, random(-12..12 except 0), random(-4..4 except 0))", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[alwaysTimes,unitPower]{{a}+({b}+{c})^{P}*{d}}.\\]
", "minValue": "{a+(b+c)^P*d}", "maxValue": "{a+(b+c)^P*d}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "resources": []}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}