// Numbas version: finer_feedback_settings {"name": "CATORCE UNO Derivacion implicita", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b"], "name": "CATORCE UNO Derivacion implicita", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
Empleando derivación implícita em ambos lados de la expresión, se obtiene:
\n\\[2x + \\simplify[all,!collectNumbers]{2y*Diff(y,x,1) + {a} + {b} *Diff(y,x,1)} = 0\\]
Tomando factor común $\\displaystyle\\frac{dy}{dx}$ y reordenando términos
\\[(\\var{b} + 2y) \\frac{dy}{dx} = \\simplify[all,!collectNumbers]{{ -a} -2x}\\] por último, se despeja $\\displaystyle\\frac{dy}{dx}$:
\\[\\frac{dy}{dx} = \\simplify[all,!collectNumbers]{({ - a} - 2 * x) / ({b} + (2 * y))}\\]
$\\displaystyle \\frac{dy}{dx}= $ [[0]]
\nEjemplo de respuesta: Digite (7−2x)/(9+2y) si la respuesta es
$\\dfrac{7-2x}{9+dy}$
Dada la función implícita en las variables $x$ y $y$
\\[\\simplify[all,!collectNumbers]{x^2+y^2+{a}x+{b}y}=\\var{c}\\]
Calcular$\\displaystyle \\frac{dy}{dx}$ usando derivación implícita, exprese la respuesta en términos de $x$ y $y$.
Implicit differentiation.
\n \t\tGiven $x^2+y^2+ax+by=c$ find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.
\n \t\t\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}]}], "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}