// Numbas version: exam_results_page_options {"name": "CUATRO UNO Derivada FT", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["d", "c"], "name": "CUATRO UNO Derivada FT", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"stepsPenalty": 0, "prompt": "

$y=\\var{c[0]}\\sin(x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

\n

Ejemplo de respuesta: si la respuesta es $-2\\sin{x}$, digite -2sin(x) en la barra de respuesta.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

En este tipo de ejercicios se deben considerar las reglas para derivadas de las funciones trigonométricas, además entender que la función es un múltiplo constante de una función trigonometrica, es decir: $kf(x)$, con $k=\\var{c[0]}$ y $f(x)=\\sin(x)$

\n

Reglas de derivada que hay que aplicar:
$\\dfrac{d}{dx}[kf(x)]=kf'(x)$
$\\dfrac{d}{dx}[\\sin{x}]=\\cos{x}$
$\\dfrac{d}{dx}[\\cos{x}]=-\\sin{x}$
$\\dfrac{d}{dx}[\\tan{x}]=\\sec^2{x}$
$\\dfrac{d}{dx}[\\cot{x}]=-\\csc^2{x}$
$\\dfrac{d}{dx}[\\sec{x}]=\\sec{x}\\tan{x}$
$\\dfrac{d}{dx}[\\csc{x}]=-\\csc{x}\\cot{x}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{c[0]}cos(x)", "marks": "20", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\var{d[0]}\\cos(x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-{d[0]}sin(x)", "marks": "20", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\var{c[2]}\\tan(x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{c[2]}sec^2(x)", "marks": "20", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "

$y=-\\sin(x)+\\var{d[2]}x^2$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

En este tipo de ejercicios se deben considerar las reglas para derivadas de las funciones trigonométricas, además entender que la función es un múltiplo constante de una función trigonometrica, es decir: $kf(x)$

\n

Reglas de derivada que hay que aplicar:
$\\dfrac{d}{dx}[kf(x)]=kf'(x)$

\n

$\\dfrac{d}{dx}[x^n]=nx^{n-1}$
$\\dfrac{d}{dx}[f+g]=f'+g'$

\n

$\\dfrac{d}{dx}[\\sin{x}]=\\cos{x}$
$\\dfrac{d}{dx}[\\cos{x}]=-\\sin{x}$
$\\dfrac{d}{dx}[\\tan{x}]=\\sec^2{x}$
$\\dfrac{d}{dx}[\\cot{x}]=-\\csc^2{x}$
$\\dfrac{d}{dx}[\\sec{x}]=\\sec{x}\\tan{x}$
$\\dfrac{d}{dx}[\\csc{x}]=-\\csc{x}\\cot{x}$

\n

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-cos(x)+2{d[2]}*x", "marks": "20", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\var{d[1]}\\sin(x)-(\\var{c[1]}\\cos(x))$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{d[1]}cos(x)+{c[1]}sin(x)", "marks": "20", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Calcular la derivada de las siguientes funciones.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"c": {"definition": "repeat(random(-5..5 except 0 except 1 except -1),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "