// Numbas version: exam_results_page_options {"name": "CUATRO DOS Derivada FT", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "p"], "name": "CUATRO DOS Derivada FT", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

", "rulesets": {}, "parts": [{"stepsPenalty": 0, "prompt": "

$y=\\sin(\\var{c[0]}x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

\n

Ejemplo de respuesta: si la respuesta es $-2\\sin{2x}$, digite -2sin(2x) en la barra de respuesta.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Como en estas funciones trigonométricas se tiene un ángulo que no es $x$, hay que considerar la regla de la cadena para calcular su derivada.

\n

regla de la cadena: $\\dfrac{d}{dx}[f(u)]=f'(u) \\times u'$; $u$ función de $x$ y con:

\n

función externa: $f(u)=\\sin{u}$

\n

función interna: $u=\\var{c[0]}x$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{c[0]}cos({c[0]}x)", "marks": "16", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\cos(\\var{c[1]}x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-{c[1]}sin({c[1]}x)", "marks": "16", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=-\\sin(\\var{c[2]}x^2)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-2{c[2]}x*cos({c[2]}x^2)", "marks": "17", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=-5\\cos(\\var{c[3]}x)+\\sin(\\var{c[4]}x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "5{c[3]}sin({c[3]}x)+{c[4]}cos({c[4]}x)", "marks": "17", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\cos(x^\\var{p[1]}-1)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-{p[1]}x^({p[1]}-1)*sin(x^{p[1]}-1)", "marks": "17", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "

$y=\\tan^\\var{p[0]}(x)$

\n

$\\dfrac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

A diferencia de los ejercicios anteriores, la función externa no es la función trigonometrica, la externa se entiende algebraica y la interna trigonométrica:

\n

regla de la cadena: $\\dfrac{d}{dx}[f(u)]=f'(u) \\times u'$; $u$ función de $x$ y con:

\n

función externa: $f(u)=u^\\var{p[0]}$

\n

función interna: $u=\\tan{x}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{p[0]}(tan^({p[0]}-1)(x))*sec^2(x)", "marks": "17", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Calcular la derivada de las siguientes funciones.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"p": {"definition": "repeat(random(3..6),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "c": {"definition": "shuffle(2..8)[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "

coefficients