// Numbas version: finer_feedback_settings {"name": "OCHO UNO Derivadas valor de f'", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "g", "ee", "ans1", "tol"], "name": "OCHO UNO Derivadas valor de f'", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {"std": ["all", "fractionNumbers"]}, "parts": [{"prompt": "
\\[ f(x) = \\simplify{ {a}*x^{b} + {c}/(x^{d}) + {ee}} \\]
\nLa derivada de la fucnión es: $f'(x)=$ [[1]]
\nEjemplo de respuesta: si la respuesta es
$-7x^5+\\dfrac{7}{x^3}-8x$, digite -7x^5+7/x^3-8x en la barra de respuesta.
El valor de la derivada cuando $x=\\var{g}\\ $ es $f'(\\var{g})=$[[0]]
\nEjemplo de respuesta: si la respuesta es
$3.21$, digite 3.21 en la barra de respuesta y debe estar aproximada a dos cifras decimales.
La respuesta debe estar aproximada a dos cifras decimales.
", "allowFractions": false, "variableReplacements": [], "maxValue": "ans1", "strictPrecision": false, "minValue": "ans1", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": "15", "showPrecisionHint": false, "type": "numberentry"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{b}{a}x^({b}-1)-{d}{c}/x^({d}+1)", "marks": "15", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "Cálcular el valor de la derivada en el punto indicado.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..7)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "g": {"definition": "random(-3..3#0.01 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "g", "description": ""}, "ee": {"definition": "random(-10..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "ee", "description": ""}, "ans1": {"definition": "precround(a*b*g^(b-1)-c*d*g^(-d-1),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans1", "description": ""}, "tol": {"definition": "0.01", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}}, "metadata": {"description": "$ \\displaystyle ax^b+\\frac{c}{x^{d}}+f$ at $x=n$
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}]}], "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}