// Numbas version: finer_feedback_settings {"name": "OCHO TRES Derivadas valor de f'", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["cts", "ct"], "name": "OCHO TRES Derivadas valor de f'", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

$y=\\var{ct}t-\\var{cts}t^2$

\n

Primero, calcular la derivada.

\n

$\\frac{dy}{dx}=$ [[0]]

\n

Ejemplo de respuesta: si la respuesta es $7t+1$, digite 7t+1 en la barra de respuesta.

\n

Ahora se iguala a cero para obtener el tiempo que tarda en alcanzar la altura máxima, con este valor se evalúa la función $y$, para obtener la altura pedida.

\n

$y=$ [[1]]

\n

Ejemplo de respuesta: si la respuesta es $501$, digite 501 en la barra de respuesta, redondeado al número entero más cercano

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{ct}-2{cts}t", "marks": "15", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"precisionType": "dp", "precisionMessage": "

Escriba la respuesta aproximado al número entero más cercano.

", "allowFractions": true, "variableReplacements": [], "maxValue": "{ct}({ct}/(2{cts}))-{cts}({ct}/(2{cts}))^2", "strictPrecision": false, "minValue": "{ct}({ct}/(2{cts}))-{cts}({ct}/(2{cts}))^2", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": "50", "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "0", "scripts": {}, "marks": "5", "showPrecisionHint": false, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Se lanza una bola hacia arriba, la posición está dada por la ecuación $ y=\\var{ct}t-\\var{cts}t^2$ con tiempo $t$ en segundos y $y$ altura en metros.

\n

Calcular la altura máxima que alcanza la bola.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"ct": {"definition": "siground(random(30..90),1)", "templateType": "anything", "group": "Ungrouped variables", "name": "ct", "description": "

coeff of t

"}, "cts": {"definition": "random(3..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "cts", "description": "

coeff of t^2

"}}, "metadata": {"description": "

Real life problems with differentiation

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}]}], "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}