// Numbas version: finer_feedback_settings {"name": "OCHO CUATRO Derivadas valor de f'", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "c", "d"], "name": "OCHO CUATRO Derivadas valor de f'", "tags": [], "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "advice": "", "rulesets": {"std": ["all"]}, "parts": [{"prompt": "
Determinar la ecuación de la recta tangente a la curva $\\simplify{y={a[0]}x^2+{b[0]}x+{c[0]}}$ en el punto en el que cruza el eje $y$.
\n$\\frac{dy}{dx}=$ [[0]]
\nPor tanto, la pendiente de la tangente donde $x=0$ es [[1]]
\nPara la función, si $x=0$, entonces $y=$ [[2]]
\nFinalmente, la ecuación de la recta tangente es: $y=$ [[3]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2*{a[0]}*x+{b[0]}", "marks": "19", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "{b[0]}", "minValue": "{b[0]}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "7", "type": "numberentry"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "{c[0]}", "minValue": "{c[0]}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "7", "type": "numberentry"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{b[0]}*x+{c[0]}", "marks": "7", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Determinar la ecuación de la recta normal a la curva $\\simplify{y={a[1]}x^2+{b[1]}x+{c[1]}}$ en el punto donde $x=\\var{d}$.
\n$\\frac{dy}{dx}=$ [[0]]
\nEl valor de la derivada cuando $x=\\var{d}$ es [[1]]
\nEl valor de la pendiente de la recta normal cuando $x=\\var{d}$ es [[4]]
\nLa coordenada $y$ en la función cuando $x=\\var{d}$, $y=$ [[2]]
\nFinalmente, la ecuación de la normal es, $y=$ [[3]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2*{a[1]}*x+{b[1]}", "marks": "16", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "2*{a[1]}*{d}+{b[1]}", "minValue": "2*{a[1]}*{d}+{b[1]}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "6", "type": "numberentry"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "{a[1]}*{d}^2+{b[1]}*{d}+{c[1]}", "minValue": "{a[1]}*{d}^2+{b[1]}*{d}+{c[1]}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "6", "type": "numberentry"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "1/(2*{a[1]}*{d}+{b[1]})*(x-{d})+({a[1]}*{d}^2+{b[1]}*{d}+{c[1]})", "marks": "6", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"allowFractions": true, "variableReplacements": [], "maxValue": "1/(2*{a[1]}*{d}+{b[1]})", "minValue": "1/(2*{a[1]}*{d}+{b[1]})", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "showCorrectAnswer": true, "scripts": {}, "marks": "6", "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "repeat(random(2..4),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "repeat(random(-10..10 except 0 except 1 except -1),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "repeat(random(-8..8 except 0 except 1 except -1),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(-2..3 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"description": "Using differentiation to find the tangent and normal to a line at a given point
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}]}], "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}