// Numbas version: finer_feedback_settings {"name": "22.a Simplify fractions (easy)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "22.a Simplify fractions (easy)", "tags": [], "metadata": {"description": "
Cancelling down a single prime factor to simplify a fraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express the fraction below in its simplest form:
\n\\[\\frac{\\var{x}}{\\var{y}}\\]
", "advice": "To simplify a fraction we need to divide both numbers by their common factors. The easiest way to do this is to keep dividing by the smallest number which divides both numbers. Since $\\var{SmallestFactor}$ divides both $\\var{x}$ and $\\var{y}$ then we can simplify
\n\\[\\frac{\\var{x}}{\\var{y}}\\]
\nto
\n\\[\\frac{\\var{x/SmallestFactor}}{\\var{y/SmallestFactor}}.\\]
\nWe keep doing this until there are no numbers (except 1) which divide both the numerator and denominator. This leaves us with a simplified form of
\n\\[\\frac{\\var{x}}{\\var{y}}=\\simplify[all,fractionNumbers]{{x/y}}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x_powers": {"name": "x_powers", "group": "Ungrouped variables", "definition": "[random(0..3),random(0..3),random(0..1)]", "description": "", "templateType": "anything", "can_override": false}, "y_powers": {"name": "y_powers", "group": "Ungrouped variables", "definition": "[random(0..3),random(0..3),random(0..1)]", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "2^x_powers[0]*3^x_powers[1]*5^x_powers[2]", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "2^y_powers[0]*3^y_powers[1]*5^y_powers[2]", "description": "", "templateType": "anything", "can_override": false}, "hcf_xy": {"name": "hcf_xy", "group": "Ungrouped variables", "definition": "2^min(x_powers[0],y_powers[0])*3^min(x_powers[1],y_powers[1])*5^min(x_powers[2],y_powers[2])", "description": "", "templateType": "anything", "can_override": false}, "SmallestFactor": {"name": "SmallestFactor", "group": "Ungrouped variables", "definition": "divisors(hcf_xy)[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "sum(x_powers)<3 && hcf_xy>1 && sum(y_powers)<4 && x