// Numbas version: finer_feedback_settings {"name": "LV08 Scalar product to find perpendicular vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "LV08 Scalar product to find perpendicular vectors", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

It is given $\\bf{a} = \\var{a}$ and $\\bf{b} = \\pmatrix{\\var{b1} \\\\ k}$ and that the two vectors are perpendicular.

\n

Find the value of $k$.

", "advice": "

The key thing to understand for this question is that for perpendicular vectors the scalar (or dot) product will give a result of zero.

\n

In this question we have,

\n

\\begin{alignat}{2}
&\\quad
&\\var{a}\\cdot\\pmatrix{\\var{b1} \\\\ k}
& = 0 \\\\
&\\Rightarrow\\quad
&\\var{a[0]}\\times\\var{b1} + \\var{a[1]} \\times k & = 0 \\\\
&\\Rightarrow\\quad
&\\var{a[0]*b1} + \\var{a[1]}k & = 0.
\\end{alignat}

\n

Solving this then gives,

\n

$$
k = \\var{k}.
$$

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9 except 0),2))", "description": "", "templateType": "anything", "can_override": false}, "asize": {"name": "asize", "group": "Ungrouped variables", "definition": "sqrt(a[0]^2+a[1]^2+a[2]^2)", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "-a[0]*b1/a[1]", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "asize", "b1", "k"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": true, "customName": "dec", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "k", "maxValue": "k", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "k", "maxValue": "k", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "resources": []}]}], "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}