// Numbas version: finer_feedback_settings {"name": "LV10 Cross or vector product of two vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "LV10 Cross or vector product of two vectors", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The vectors $\\bf a$ and $\\bf b$ are defined as follows,
$$
{\\bf a} = \\var{a} \\qquad \\text{and} \\qquad \\bf b = \\var{b}.
$$

", "advice": "

The vector product (also referred to as the cross product) of two vectors can be calculated as follows:

\n

$$
\\pmatrix{a_1 \\\\ a_2 \\\\ a_3} \\times \\pmatrix{b_1 \\\\ b_2 \\\\ b_3} = \\pmatrix{a_2b_3-a_3b_2 \\\\ -(a_1b_3-a_3b_1) \\\\ a_1b_2-a_2b_1}.
$$

\n

A way to think of this is as the following determinant:

\n

$$
\\begin{vmatrix}
\\bf i & \\bf j & \\bf k\\\\
a_1 & a_2 & a_3 \\\\
b_1 & b_2 & b_3
\\end{vmatrix},
$$

\n

where $\\bf i$, $\\bf j $, and $\\bf k$ are the standard unit basis vectors.

\n

In this question we therefore have:

\n

$$
\\begin{align*}
\\var{a} \\times \\var{b} & = \\pmatrix{\\var{a[1]} \\times \\var{b[2]} - \\var{a[2]} \\times \\var{b[1]} \\\\ -(\\var{a[0]} \\times \\var{b[2]} - \\var{a[2]} \\times \\var{b[0]}) \\\\ \\var{a[0]} \\times \\var{b[1]} - \\var{a[1]} \\times \\var{b[0]}}\\\\
& = \\var{answer}.
\\end{align*}
$$

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9),3))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9),3))", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "cross(a,b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $\\bf a \\times \\bf b$.

", "correctAnswer": "answer", "correctAnswerFractions": false, "numRows": "3", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "resources": []}]}], "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}