// Numbas version: finer_feedback_settings {"name": "SM05 Calculate the mean (Frequency table) - With a calculator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "SM05 Calculate the mean (Frequency table) - With a calculator", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
Using a calculator, work out the mean for each of these frequency tables, give your answers to two decimal places.
", "advice": "To calculate the mean shoe size we need to add a third column to our table where we multiply the grade by the number (frequency) of students who are that shoe size.
\n| Shoe Size | \nFrequency | \nShoe Size * Frequency | \n
| 3 | \n{p1} | \n3 * {p1} = {3*p1} | \n
| 4 | \n{p2} | \n4 * {p2} = {4*p2} | \n
| 5 | \n{p3} | \n5 * {p3} = {5*p3} | \n
| 6 | \n{p4} | \n6 * {p4} = {6*p4} | \n
| 7 | \n{p5} | \n7 * {p5} = {7*p5} | \n
| 8 | \n{p6} | \n8 * {p6} = {8*p6} | \n
Now we find the total sum of that third column:
\n$\\var{3*p1} + \\var{4*p2} + \\var{5*p3} + \\var{6*p4} + \\var{7*p5} + \\var{8*p6} = \\var{3*p1 + 4*p2 + 5*p3 + 6*p4 + 7*p5 + 8*p6}.$
\nTo find the mean shoe size we must divide this total by the total number of students:
\n$\\frac{\\var{3*p1 + 4*p2 + 5*p3 + 6*p4 + 7*p5 + 8*p6}}{\\var{p1}+\\var{p2}+\\var{p3}+\\var{p4}+\\var{p5}+\\var{p6}} = \\frac{\\var{3*p1 + 4*p2 + 5*p3 + 6*p4 + 7*p5 + 8*p6}}{\\var{sum1}} = \\var{mean1a}.$
\nThe question asks us for our answer to two decimal places so the last thing we need to do is round. Hence, the mean is $\\var{mean1}$.
\nYou can use this same method to answer the other parts of this question!
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"mean1a": {"name": "mean1a", "group": "Part a", "definition": "((3*p1)+(4*p2)+(5*p3)+(6*p4)+(7*p5)+(8*p6))/sum1", "description": "The mean - part a
", "templateType": "anything", "can_override": false}, "p1": {"name": "p1", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 1 - part a
", "templateType": "randrange", "can_override": false}, "p2": {"name": "p2", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 2 - part a
", "templateType": "randrange", "can_override": false}, "p3": {"name": "p3", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 3 - part a
", "templateType": "randrange", "can_override": false}, "p4": {"name": "p4", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 4 - part a
", "templateType": "randrange", "can_override": false}, "p5": {"name": "p5", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 5 - part a
", "templateType": "randrange", "can_override": false}, "p6": {"name": "p6", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 6 - part a
", "templateType": "randrange", "can_override": false}, "mean1": {"name": "mean1", "group": "Part a", "definition": "precround(mean1a,2)", "description": "Mean rounded to two decimal places - part a
", "templateType": "anything", "can_override": false}, "sum1": {"name": "sum1", "group": "Part a", "definition": "p1+p2+p3+p4+p5+p6", "description": "Sum of frequencies - part a
", "templateType": "anything", "can_override": false}, "sum2": {"name": "sum2", "group": "Part b", "definition": "p1b+p2b+p3b+p4b", "description": "Sum of frequencies - part b
", "templateType": "anything", "can_override": false}, "p1b": {"name": "p1b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 1 - part b
", "templateType": "randrange", "can_override": false}, "p2b": {"name": "p2b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 2 - part b
", "templateType": "randrange", "can_override": false}, "p3b": {"name": "p3b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 3 - part b
", "templateType": "randrange", "can_override": false}, "p4b": {"name": "p4b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 4 - part b
", "templateType": "randrange", "can_override": false}, "mean2a": {"name": "mean2a", "group": "Part b", "definition": "((0*p1b)+(1*p2b)+(2*p3b)+(3*p4b))/sum2", "description": "The mean - part b
", "templateType": "anything", "can_override": false}, "mean2": {"name": "mean2", "group": "Part b", "definition": "precround(mean2a,2)", "description": "Mean rounded to two decimal places - part b
", "templateType": "anything", "can_override": false}, "p1c": {"name": "p1c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 1 - part c
", "templateType": "randrange", "can_override": false}, "p2c": {"name": "p2c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 2 - part c
", "templateType": "randrange", "can_override": false}, "p3c": {"name": "p3c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 3 - part c
", "templateType": "randrange", "can_override": false}, "p4c": {"name": "p4c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 4 - part c
", "templateType": "randrange", "can_override": false}, "p5c": {"name": "p5c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 5 - part c
", "templateType": "randrange", "can_override": false}, "p6c": {"name": "p6c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 6 - part c
", "templateType": "randrange", "can_override": false}, "mean3": {"name": "mean3", "group": "Part c", "definition": "precround(mean3a,2)", "description": "Mean rounded to two decimal places - part c
", "templateType": "anything", "can_override": false}, "sum3": {"name": "sum3", "group": "Part c", "definition": "p1c+p2c+p3c+p4c+p5c+p6c", "description": "Sum of frequencies - part c
", "templateType": "anything", "can_override": false}, "mean3a": {"name": "mean3a", "group": "Part c", "definition": "((0*p1c)+(1*p2c)+(2*p3c)+(3*p4c)+(4*p5c)+(5*p6c))/sum3", "description": "The mean - part c
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["mean1", "mean1a", "p1", "p2", "p3", "p4", "p5", "p6", "sum1"]}, {"name": "Part b", "variables": ["mean2", "mean2a", "p1b", "p2b", "p3b", "p4b", "sum2"]}, {"name": "Part c", "variables": ["mean3a", "mean3", "p1c", "p2c", "p3c", "p4c", "p5c", "p6c", "sum3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": true, "customName": "a)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The table below shows the distribution of shoe sizes amongst {sum1} students at a school in Sheffield.
\n| Shoe size | \nFrequency | \n
| 3 | \n{p1} | \n
| 4 | \n{p2} | \n
| 5 | \n{p3} | \n
| 6 | \n{p4} | \n
| 7 | \n{p5} | \n
| 8 | \n{p6} | \n
The table below shows the distribution of number of pets that {sum2} randomly asked people have.
\n| Number of Pets | \nFrequency | \n
| 0 | \n{p1b} | \n
| 1 | \n{p2b} | \n
| 2 | \n{p3b} | \n
| 3 | \n{p4b} | \n
The table below shows the distribution of the number of drinks per order at a coffee shop in Manchester.
\n| Number of Drinks | \nFrequency | \n
| 0 | \n{p1c} | \n
| 1 | \n{p2c} | \n
| 2 | \n{p3c} | \n
| 3 | \n{p4c} | \n
| 4 | \n{p5c} | \n
| 5 | \n{p6c} | \n