// Numbas version: finer_feedback_settings {"name": "Rectangular Hyperbola", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "c", "d"], "name": "Rectangular Hyperbola", "tags": [], "advice": "

Don't forget the following when trying to find asymptotes:

\n\n

Steps:

\n
    \n
  1. Transpose to eliminate the fraction: $y(\\var{c}x+\\var{d}) = \\var{a}x+\\var{b}$
  2. \n
  3. At this stage we have a coefficient for the highest order of $y$.
  4. \n\n
  5. Going back to step 1, multiply out the bracket: $\\var{c}xy+\\var{d}y = \\var{a}x+\\var{b}$
  6. \n
  7. Collect $x$ terms together: $\\var{c}xy-\\var{a}x+\\var{d}y-\\var{b} = 0$
  8. \n
  9. Factorise for $x$: $x(\\var{c}y-\\var{a})+\\var{d}y-\\var{b} = 0$
  10. \n
  11. Equate the coefficient of $x$ to zero:
  12. \n\n
", "rulesets": {}, "parts": [{"prompt": "

Where does the asymptote that is parallel to the $x-axis$ intersect the $y-axis$?

\n

 [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": true, "variableReplacements": [], "maxValue": "{a}/{c}", "minValue": "{a}/{c}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Where does the asymptote that is parallel to the $y-axis$ intersect the $x-axis$?

\n

 [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": true, "variableReplacements": [], "maxValue": "{-d}/{c}", "minValue": "{-d}/{c}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

You are given the equation \\[\\simplify[all]{y=({a}x+{b})/({c}x+{d})}.\\]

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "a+c=0"}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(-12..12 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(-12..12 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(-12..12 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(-12..12 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"description": "

In this question students are asked to find the asymptotes that are parallel to the $x-$ and $y-$axis.

", "licence": "All rights reserved"}, "type": "question", "contributors": [{"name": "Jon Stammers", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/891/"}]}]}], "contributors": [{"name": "Jon Stammers", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/891/"}]}