// Numbas version: exam_results_page_options {"name": "First 3 terms of Binomial series for Natural exponent", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"preventleave": false, "showfrontpage": false, "allowregen": true}, "question_groups": [{"questions": [{"preamble": {"css": "", "js": ""}, "statement": "

Given the expression \\((\\var{a}+\\var{b}x)^{\\var{n}}\\)

", "name": "First 3 terms of Binomial series for Natural exponent", "tags": [], "extensions": [], "variable_groups": [], "ungrouped_variables": ["a", "b", "n", "c", "k"], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/", "name": "Frank Doheny"}], "type": "question", "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "type": "jme", "prompt": "

Write out the first three terms of the binomial expansion.

", "checkingtype": "absdiff", "expectedvariablenames": [], "answer": "{a}^{n}+{n}*{a}^({n}-1)*{b}x+{n}*{n-1}*{a}^({n}-2)*{b}^2/2x^2", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "checkvariablenames": false, "scripts": {}, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "vsetrangepoints": 5, "marks": "3"}], "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": "

Find the first 3 terms of Binomial series having a Natural exponent

"}, "functions": {}, "variables": {"b": {"name": "b", "definition": "random(2..12#1)", "description": "", "templateType": "randrange", "group": "Ungrouped variables"}, "k": {"name": "k", "definition": "random(2..{n}-1)", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "c": {"name": "c", "definition": "comb({n},{k})*{a}^({n}-{k})*{b}^{k}", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "n": {"name": "n", "definition": "random(4..9#1)", "description": "", "templateType": "randrange", "group": "Ungrouped variables"}, "a": {"name": "a", "definition": "random(2..10#1)", "description": "", "templateType": "randrange", "group": "Ungrouped variables"}}, "rulesets": {}, "advice": "

The binomial series expansion for an expression of the form \\((a+bx)^n\\) where \\(n\\) is a Natural number is given by:

\n

\\((a+bx)^n=\\tbinom{n}{0}(a)^n(bx)^{0}+\\tbinom{n}{1}(a)^{n-1}(bx)^{1}+\\tbinom{n}{2}(a)^{n-2}(bx)^{2}+...\\tbinom{n}{k}(a)^{n-k}(bx)^{k}+...\\tbinom{n}{n}(a)^{0}(bx)^{n}\\)

\n

In this example  \\(n=\\var{n}\\),  \\(k=\\var{k}\\),  \\(a=\\var{a}\\)  and  \\(b=\\var{b}\\).

\n

So the first three terms of the binomial series expansion are:

\n

\\(\\var{a}^{\\var{n}}+\\tbinom{\\var{n}}{\\var{1}}*\\var{a}^{\\var{n}-1}*\\var{b}^{1}+\\tbinom{\\var{n}}{2}*\\var{a}^{\\var{n}-2}*\\var{b}^{2}\\)

\n

\\(=\\simplify{{a}^{n}}+\\simplify{{n}*{a}^({n}-1)*{b}}x+\\simplify{{n}*{n-1}*{a}^{{n}-2}*{b}^2/2x^2}\\)

\n

"}], "pickingStrategy": "all-ordered"}], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/", "name": "Frank Doheny"}]}