// Numbas version: exam_results_page_options {"name": "2 masses 3 springs: example 1", "extensions": [], "custom_part_types": [], "resources": [["question-resources/3_Springs.jpg", "/srv/numbas/media/question-resources/3_Springs.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": [], "rulesets": {}, "parts": [{"prompt": "

The equations of motion associated with the system can be written in matrix form as:

\n

\\(\\left( \\begin{array}{cc}\\frac{d^2x_a}{dt^2}\\\\ \\frac{d^2x_b}{dt^2}\\end{array}\\right)=\\left( \\begin{array}{cc}A&B\\\\C&D\\end{array}\\right)\\left( \\begin{array}{cc}x_a\\\\x_b\\end{array}\\right)\\)

\n

Enter the values of the 2x2 matrix as integers or fractions:   [[0]]

", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"tolerance": 0, "allowResize": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": "4", "type": "matrix", "correctAnswerFractions": true, "numRows": "2", "allowFractions": true, "correctAnswer": "matx_eqn", "scripts": {}, "showCorrectAnswer": true, "showFeedbackIcon": true, "markPerCell": true, "numColumns": "2"}]}, {"prompt": "

The matrix has two eigenvalues.

\n

The eigenvalue closest zero is \\(\\lambda_1=\\) [[0]]

\n

The other eigenvalue is \\(\\lambda_2=\\) [[1]]

", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"correctAnswerFraction": false, "variableReplacements": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "marks": 1, "type": "numberentry", "minValue": "{lambda1}", "allowFractions": true, "notationStyles": ["plain", "en", "si-en"], "maxValue": "lambda1", "scripts": {}, "showCorrectAnswer": true, "mustBeReducedPC": 0, "mustBeReduced": false, "showFeedbackIcon": true}, {"correctAnswerFraction": false, "variableReplacements": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "marks": 1, "type": "numberentry", "minValue": "lambda2", "allowFractions": true, "notationStyles": ["plain", "en", "si-en"], "maxValue": "lambda2", "scripts": {}, "showCorrectAnswer": true, "mustBeReducedPC": 0, "mustBeReduced": false, "showFeedbackIcon": true}]}, {"prompt": "

The eigenvector corresponding to \\(\\lambda_1\\) is given by \\(\\left( \\begin{array}{cc}\\var{k2}\\\\ Y_1\\end{array}\\right)\\)

\n

Enter the value for \\(Y_1\\) [[0]]

\n

The eigenvector corresponding to \\(\\lambda_2\\) is given by \\(\\left( \\begin{array}{cc}\\var{k2}\\\\ Y_2\\end{array}\\right)\\)

\n

Enter the value for \\(Y_2\\) [[1]]

", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"correctAnswerFraction": false, "variableReplacements": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "marks": 1, "type": "numberentry", "minValue": "{k1}+{k2}+{m1}*{lambda1}", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "{k1}+{k2}+{m1}*{lambda1}", "scripts": {}, "showCorrectAnswer": true, "mustBeReducedPC": 0, "mustBeReduced": false, "showFeedbackIcon": true}, {"correctAnswerFraction": false, "variableReplacements": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "marks": 1, "type": "numberentry", "minValue": "{k1}+{k2}+{m1}*{lambda2}", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "{k1}+{k2}+{m1}*{lambda2}", "scripts": {}, "showCorrectAnswer": true, "mustBeReducedPC": 0, "mustBeReduced": false, "showFeedbackIcon": true}]}], "preamble": {"js": "", "css": ""}, "name": "2 masses 3 springs: example 1", "functions": {}, "variable_groups": [], "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Two masses are connected by three springs. The spring having spring constant \\({k_1}\\) is rigidly fixed to a wall on the left hand side and the spring having spring constant \\({k_3}\\) is rigidly fixed to a wall on the right hand side.

\n

\n

The first mass is \\(\\var{m1}kg\\) and the second mass is \\(\\var{m2}kg\\).

\n

The spring constants are  k1 = \\(\\var{k1}\\),   k2 = \\(\\var{k2}\\)   and k3 = \\(\\var{k3}\\).

\n

\n

", "advice": "

Equations of motion:

\n

For mass \\(M_1\\):       \\(\\var{m1}\\frac{d^2x_a}{dt^2}=-\\var{k1}x_a+\\var{k2}(x_b-x_a)\\)

\n

                                  \\(\\var{m1}\\frac{d^2x_a}{dt^2}=-\\simplify{{k1}+{k2}}x_a+\\var{k2}x_b\\)

\n

                                  \\(\\frac{d^2x_a}{dt^2}=-\\simplify{({k1}+{k2})/{m1}}x_a+\\simplify{{k2}/{m1}}x_b\\)

\n

For mass \\(M_2\\):        \\(\\var{m2}\\frac{d^2x_b}{dt^2}=-\\var{k2}(x_b-x_a)-\\var{k3}x_b\\)

\n

                                   \\(\\var{m2}\\frac{d^2x_b}{dt^2}=\\var{k2}x_a-\\simplify{{k3}+{k2}}x_b\\)

\n

                                   \\(\\frac{d^2x_b}{dt^2}=\\simplify{{k2}/{m2}}x_a-\\simplify{({k3}+{k2})/{m2}}x_b\\)

\n

Writing this in matrix format gives:

\n

                                   \\(\\left( \\begin{array}{cc}\\frac{d^2x_a}{dt^2}\\\\ \\frac{d^2x_b}{dt^2}\\end{array}\\right)=\\left( \\begin{array}{cc}-\\simplify{({k1}+{k2})/{m1}}&\\simplify{{k2}/{m1}}\\\\\\simplify{{k2}/{m2}}&\\simplify{-({k2}+{k3})/{m2}}\\end{array}\\right)\\left( \\begin{array}{cc}x_a\\\\x_b\\end{array}\\right)\\)

\n

To find the eigenvalues we must solve:

\n

\\(\\left( \\begin{array}{cc}-\\simplify{({k1}+{k2})/{m1}}-\\lambda&\\simplify{{k2}/{m1}}\\\\\\simplify{{k2}/{m2}}&-\\simplify{({k2}+{k3})/{m2}}-\\lambda\\end{array}\\right)=0\\)

\n

\\(\\left(-\\simplify{({k1}+{k2})/{m1}}-\\lambda\\right)\\left(-\\simplify{({k2}+{k3})/{m2}}-\\lambda\\right)-\\left(\\simplify{{k2}/{m1}}\\right)\\left(\\simplify{{k2}/{m2}}\\right)=0\\)

\n

\\(\\lambda^2+\\var{b}\\lambda+\\var{c}=0\\)

\n

\\(\\lambda=\\frac{-\\var{b}\\pm \\sqrt{\\var{b}^2-4*\\var{c}}}{2}\\)

\n

\\(\\lambda=\\frac{-\\var{b}\\pm \\sqrt{\\simplify{{b}^2-4*{c}}}}{2}\\)

\n

\\(\\lambda=\\var{lambda1}\\)  and  \\(\\lambda=\\var{lambda2}\\)

\n

For \\(\\lambda=\\var{lambda1}\\)

\n

\\(\\left( \\begin{array}{cc}-\\simplify{({k1}+{k2})/{m1}}-(\\var{lambda1})&\\simplify{{k2}/{m1}}\\\\\\simplify{{k2}/{m2}}&-\\simplify{({k2}+{k3})/{m2}}-(\\var{lambda1})\\end{array}\\right)\\left( \\begin{array}{cc}x\\\\y\\end{array}\\right)=\\left( \\begin{array}{cc}0\\\\0\\end{array}\\right)\\)

\n

\\(\\left( \\begin{array}{cc}\\simplify{-({k1}+{k2}+{m1}*{lambda1})/{m1}}&\\simplify{{k2}/{m1}}\\\\\\simplify{{k2}/{m2}}&\\simplify{-({k2}+{k3}+{lambda1}*{m2})/{m2}}\\end{array}\\right)\\left( \\begin{array}{cc}x\\\\y\\end{array}\\right)=\\left( \\begin{array}{cc}0\\\\0\\end{array}\\right)\\)

\n

\\(\\simplify{-({k1}+{k2}+{lambda1}*{m1})/{m1}}x+\\simplify{{k2}/{m1}}y=0\\)

\n

\\(\\simplify{{k2}/{m1}}y=\\simplify{({k1}+{k2}+{lambda1}*{m1})/{m1}}x\\)

\n

When \\(x=\\var{k2}\\)

\n

\\(\\simplify{{k2}/{m1}}y=(\\simplify{({k1}+{k2}+{lambda1}*{m1})/{m1}})\\var{k2}\\)

\n

\\(y=\\var{y1}\\)

\n

For \\(\\lambda=\\var{lambda2}\\)

\n

\\(\\left( \\begin{array}{cc}-\\simplify{({k1}+{k2})/{m1}}-(\\var{lambda2})&\\simplify{{k2}/{m1}}\\\\\\simplify{{k2}/{m2}}&-\\simplify{({k2}+{k3})/{m2}}-(\\var{lambda2})\\end{array}\\right)\\left( \\begin{array}{cc}x\\\\y\\end{array}\\right)=\\left( \\begin{array}{cc}0\\\\0\\end{array}\\right)\\)

\n

\\(\\left( \\begin{array}{cc}\\simplify{-({k1}+{k2}+{lambda2}*{m1})/{m1}}&\\simplify{{k2}/{m1}}\\\\\\simplify{{k2}/{m2}}&\\simplify{-({k2}+{k3}+{m2}*{lambda2})/{m2}}\\end{array}\\right)\\left( \\begin{array}{cc}x\\\\y\\end{array}\\right)=\\left( \\begin{array}{cc}0\\\\0\\end{array}\\right)\\)

\n

\\((\\simplify{-({k1}+{k2}+{m1}*{lambda2})/{m1}})x+\\simplify{{k2}/{m1}}y=0\\)

\n

\\(\\simplify{{k2}/{m2}}y=(\\simplify{({k1}+{k2}+{m1}*{lambda2})/{m1}})x\\)

\n

When \\(x=\\var{k2}\\)

\n

\\(\\simplify{{k2}/{m2}}y=(\\simplify{({k1}+{k2}+{m1}*{lambda2})/{m1}})\\var{k2}\\)

\n

\\(y=\\var{y2}\\)

", "ungrouped_variables": ["k1", "k2", "k3", "m1", "m2", "b", "c", "lambda1", "lambda2", "x1", "y1", "x2", "y2", "matx_eqn", "n", "a1", "b1", "c1", "d1"], "variables": {"lambda1": {"description": "", "templateType": "anything", "definition": "(-{b}+sqrt({b}^2-4*{c}))/2", "name": "lambda1", "group": "Ungrouped variables"}, "k1": {"description": "", "templateType": "randrange", "definition": "random(1..15#1)", "name": "k1", "group": "Ungrouped variables"}, "b": {"description": "", "templateType": "anything", "definition": "({k1}+{k2})/{m1}+({k2}+{k3})/{m2}", "name": "b", "group": "Ungrouped variables"}, "x1": {"description": "", "templateType": "anything", "definition": "{k2}", "name": "x1", "group": "Ungrouped variables"}, "m2": {"description": "", "templateType": "anything", "definition": "{m1}", "name": "m2", "group": "Ungrouped variables"}, "a1": {"description": "", "templateType": "anything", "definition": "-({k1}+{k2})/{m1}", "name": "a1", "group": "Ungrouped variables"}, "c": {"description": "", "templateType": "anything", "definition": "({k1}*{k2}+{k1}*{k3}+{k2}*{k3})/({m1}*{m2})", "name": "c", "group": "Ungrouped variables"}, "lambda2": {"description": "", "templateType": "anything", "definition": "(-{b}-sqrt({b}^2-4*{c}))/2", "name": "lambda2", "group": "Ungrouped variables"}, "y2": {"description": "", "templateType": "anything", "definition": "{k1}+{k2}+{m1}*{lambda2}", "name": "y2", "group": "Ungrouped variables"}, "x2": {"description": "", "templateType": "anything", "definition": "{k2}", "name": "x2", "group": "Ungrouped variables"}, "y1": {"description": "", "templateType": "anything", "definition": "{k1}+{k2}+{m1}*{lambda1}", "name": "y1", "group": "Ungrouped variables"}, "n": {"description": "

multiplier for m2

", "templateType": "randrange", "definition": "random(1..4#1)", "name": "n", "group": "Ungrouped variables"}, "matx_eqn": {"description": "", "templateType": "anything", "definition": "matrix([\n [a1,b1],\n [c1,d1]\n]) ", "name": "matx_eqn", "group": "Ungrouped variables"}, "b1": {"description": "", "templateType": "anything", "definition": "{k2}/{m1}", "name": "b1", "group": "Ungrouped variables"}, "k3": {"description": "", "templateType": "anything", "definition": "{k1}", "name": "k3", "group": "Ungrouped variables"}, "k2": {"description": "", "templateType": "anything", "definition": "{k1}", "name": "k2", "group": "Ungrouped variables"}, "c1": {"description": "", "templateType": "anything", "definition": "{k2}/{m2}", "name": "c1", "group": "Ungrouped variables"}, "m1": {"description": "", "templateType": "randrange", "definition": "random(1..5#1)", "name": "m1", "group": "Ungrouped variables"}, "d1": {"description": "", "templateType": "anything", "definition": "-({k2}+{k3})/{m2}", "name": "d1", "group": "Ungrouped variables"}}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": ""}, "type": "question", "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}