// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 6.0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Combining algebraic fractions 6.0", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "combining algebraic fractions", "common denominator", "quadratic denominator"], "advice": "\n
The formula for {nb} fractions is :
\n\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]
\nand for this exercise we have $\\simplify{b={a1}x+{b}}$, $\\simplify{d={a2}x^2+{q}x+{d}}$.
Hence we have:
\\[\\begin{eqnarray*}\\simplify[std]{{a} / ({a1}*x + {b}) + (({c}x+{p}) / ({a2}*x^2+{q}x + {d}))} &=& \\simplify[std]{({a} * ({a2}*x^2 +{q}x+ {d}) + ({c}x+{p}) * ({a1}*x + {b})) / (({a1}*x + {b}) * ({a2}*x^2 +{q}x+ {d}))}\\\\& =& \\simplify[std,!collectNumbers]{({a*a2} * x^2 + {a *q}x+{a*d}+{a1*c}x^2+{p*a1+b*c}x+{b*p}) / (({a1}*x + {b}) * ({a2}*x^2 +{q}x+ {d}))}\\\\&=&\\simplify[std,!noLeadingMinus]{({co1}x^2+{co2}x+{co3})/(({a1}*x + {b}) * ({a2}*x^2 +{q}x+ {d}))}\\end{eqnarray*}\\]
Express \\[\\simplify[std]{{a} / ({a1}x + {b}) + (({c}x+{p}) / ({a2}x^2 +{q}x+ {d}))}\\] as a single fraction.
\nInput the fraction here: [[0]].
\nDo not expand out the denominator.
\nMake sure that you simplify the numerator.
\nClick on Show steps if you need help.You will lose one mark if you do so.
\n", "gaps": [{"notallowed": {"message": "
Input as a single fraction. Make sure that you simplify the numerator.
", "showstrings": false, "strings": [")-", ")+"], "partialcredit": 0.0}, "checkingaccuracy": 1e-05, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "({co1} * x^2 +{co2}*x+ {co3})/ (({a1}*x + {b}) * ({a2}*x^2 +{q}x+ {d}))", "type": "jme"}], "steps": [{"prompt": "\nThe formula for {nb} fractions is :
\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]
and for this exercise we have $\\simplify{b={a1}x+{b}}$, $\\simplify{d={a2}x^2+{q}x+{d}}$.
\nNote that in your answer you do not need to expand the denominator.
\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\nAdd the following two fractions together and express as a single fraction over a common denominator.
\n\n \n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..7)", "name": "a"}, "co1": {"definition": "a*a2+a1*c", "name": "co1"}, "c": {"definition": "random(-6..6 except 0)", "name": "c"}, "b": {"definition": "random(-6..6 except 0)", "name": "b"}, "d": {"definition": "r^2+random(1..5)", "name": "d"}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb"}, "co3": {"definition": "a*d+b*p", "name": "co3"}, "a1": {"definition": 1.0, "name": "a1"}, "p": {"definition": "random(-4..4 except 0)", "name": "p"}, "co2": {"definition": "a*q+p*a1+b*c", "name": "co2"}, "q": {"definition": "2*r", "name": "q"}, "r": {"definition": "random(-3..3)", "name": "r"}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1"}, "a2": {"definition": 1.0, "name": "a2"}}, "metadata": {"notes": "
19/08/2012:
\nAdded tags.
\nAdded description.
\nNote that the quadratic has no real roots.
\nLooking at Advice, we see that various rules are switched on and off to get a display of the solution which is \"natural\".
\nChecked calculations.OK.
\n02/02/2013:
\nAdded homily about simplifying the numerator, both in the part and in the forbidden string warning.
", "description": "Express $\\displaystyle \\frac{a}{x + b} + \\frac{cx+d}{x^2 +px+ q}$ as an algebraic single fraction over a common denominator.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "resources": []}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}