// Numbas version: finer_feedback_settings {"name": "Line\u00e6re likninger 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Line\u00e6re likninger 1", "tags": [], "metadata": {"description": "
Solve linear equations with one unknown. Including brackets and fractions.
", "licence": "None specified"}, "statement": "Løs likningene. Oppgi svarene som heltall eller brøk.
", "advice": "\\[\\simplify{{a}x+{b} = {c}} \\]
\nFørst samler vi alle $x$-leddene på den ene siden av likningen.
\nFor å få det til må vi {add[0]} $\\var{abs(b)}$ {add[1]} begge sider:
\n\\[\\simplify[all,!collectNumbers]{{a}x+{b} - {b} = {c} - {b}} \\]
\n\\[\\var{a}x = \\simplify{{c-b}} \\]
\nFor å få $x$ alene deler vi på koeffisienten til $x$ (tallet foran $x$) på begge sider.
\nVi deler på $\\var{a}$:
\n\\[ x = {\\simplify{({c}-{b})/{a}}} \\]
\n\n \\[ \\frac{\\simplify{{d}x + {f}}}{\\var{g}} = \\var{h} \\]
Først vil vi kvitte oss med brøken på venstre side. Det gjør vi ved å multiplisere begge sidene med $\\var{g}$:
\\[ \\begin{split} \\frac{\\simplify{{d}x + {f}}}{\\var{g}} \\cdot \\var{g} &= \\var{h} \\cdot \\var{g} \\\\\\\\ \\simplify{{d}x + {f}} &= \\var{h*g} \\end{split} \\]
Det neste vi gjør er å samle $x$-leddene på den ene siden av likningen.
Vi må da {add2[0]} $\\var{abs(f)}$ {add2[1]} begge sider:
\\[ \\begin{split} \\var{d}x &= \\simplify[]{{h*g}-{f}} \\\\ &= \\simplify[]{{h*g-f}} \\end{split}\\]
Til slutt må vi dele på $\\var{d}$ for å få $x$ alene på venstre siden.
\\[x = \\simplify[fractionNumbers]{{(h*g-f)/d}} \\]
\\[ \\simplify{{b}({c}x+{g})} = \\var{d} \\]
\nI oppgave b) var $x$-uttrykket delt på $\\var{g}$, og vi måtte da multiplisere for å få bort nevneren. Her er $x$-uttrykket multiplisert med et tall, og da må vi dividere for å bli kvitt det-
Vi deler begge sider på $\\var{b}$:
\\[ \\begin{split} \\frac{\\simplify{{b}({c}x+{g})}}{ \\var{b}} &= \\frac{\\var{d}}{\\var{b}} \\\\ \\\\ \\simplify{{c}x+{g}} &= \\simplify[fractionNumbers]{{d/b}} \\end{split} \\]
Det neste vi gjør er å samle $x$-leddene på den ene siden av likningen.
Vi må da {add3[0]} $\\var{abs(g)}$ {add3[1]} begge sider:
\\[ \\begin {split} \\simplify[all,!collectNumbers]{{c}x + {g} - {g}} &= \\simplify[fractionNumbers,!cancelTerms]{{d/b} - {g}}\\\\ \\var{c}x &= \\simplify[fractionNumbers]{{d/b-g}} \\end{split} \\]
Til slutt må vi dele på $\\var{c}$for å få $x$ alene på venstre siden.
\\[ x = \\simplify[fractionNumbers]{{(d/b-g)/c}} \\]
$\\simplify{{a}x+{b} = {c}}$
\n\n$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-rational:$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\dfrac{\\simplify{{d}x + {f}}}{\\var{g}} = \\var{h}$
\n\n$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-rational:$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{b}({c}x+{g})} = \\var{d}$
\n\n$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a3}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-rational:$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "resources": []}]}], "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}