// Numbas version: finer_feedback_settings {"name": "Line\u00e6re likninger 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Line\u00e6re likninger 2", "tags": [], "metadata": {"description": "
Solve linear equations with unkowns on both sides. Including brackets and fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Løs likningene. Oppgi svaret som et helt tall eller en brøk.
", "advice": "Oppgave a)
\nI $\\simplify{{l}({m}w-{n}) = {p}w+{q}}$, må vi først løse opp parentesene, deretter samler vi alle $w$'ene på venstre side og alle tallene på høyre side. Til slutt deler vi på tallet foran $w$ (koeffisienten til $w$) for å få $w$ alene.
\n\n| $\\simplify{{l}({m}w-{n})}$ | \n$=$ | \n$\\simplify{{p}w+{q}}$ | \n\n |
| \n | \n | \n | \n |
| $\\simplify{{l*m}w-{n*l}}$ | \n$=$ | \n$\\simplify{{p}w+{q}}$ | \n\n |
| \n | \n | \n | \n |
| $\\simplify[!cancelTerms,unitFactor]{{l*m}w-{n*l}-{p}w}$ | \n$=$ | \n$\\simplify[!cancelTerms,unitFactor]{{p}w+{q}-{p}w}$ | \n(trekker fra $\\var{p}w$ på begge sider) | \n
| \n | \n | \n | \n |
| $\\simplify{{l*m-p}w-{n*l}}$ | \n$=$ | \n$\\var{q}$ | \n\n |
| \n | \n | \n | \n |
| $\\var{l*m-p}w-\\var{n*l}+\\var{n*l}$ | \n$=$ | \n$\\var{q}+\\var{n*l}$ | \n(legger til $\\var{n*l}$ på begge sider) | \n
| \n | \n | \n | \n |
| $\\var{l*m-p}w$ | \n$=$ | \n$\\var{q+n*l}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{\\frac{\\var{l*m-p}w}{\\var{l*m-p}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q+n*l}}{\\var{l*m-p}}}$ | \n(deler på $\\var{l*m-p}$ på begge sider) | \n
| \n | \n | \n | \n |
| $w$ | \n$=$ | \n$\\displaystyle{\\simplify{{q+n*l}/{l*m-p}}} $ | \n\n |
Oppgave b)
\nI uttrykket $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}=\\var{g}$ må vi multiplisere med $(y-\\var{f})$ for å bli kvitt brøken, deretter får vi alle $y$'ene på ene siden og tallene på andre siden, og til slutt deler vi på koeffisienten til $y$ for å få $y$ alene..
\n\n| $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}$ | \n$=$ | \n$\\var{g}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}\\cdot(y-\\var{f})$ | \n$=$ | \n$\\var{g}\\cdot (y-\\var{f})$ | \n(multipliserer med (y-\\var{f}) ) | \n
| \n | \n | \n | \n |
| $\\var{d}y$ | \n$=$ | \n$\\simplify[unitFactor]{{g}y+{-g*f}}$ | \n\n |
| \n | \n | \n | \n |
| $\\simplify[!cancelTerms,unitFactor]{{d}y+{-g}y}$ | \n$=$ | \n$\\simplify[!cancelTerms,unitFactor]{{-g*f}}$ | \n(legger til $\\simplify{{-g}y}$ på begge sider | \n
| \n | \n | \n | \n |
| $\\var{d-g}y$ | \n$=$ | \n$\\var{-g*f}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{\\frac{\\var{d-g}y}{\\var{d-g}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{-g*f}}{\\var{d-g}}}$ | \n(deler på $\\var{d-g}$ på begge sider) | \n
| \n | \n | \n | \n |
| $y$ | \n$=$ | \n$\\displaystyle{\\simplify{{-g*f}/{d-g}}}$ | \n\n |
Oppgave c)
\nI uttrykket $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}=\\var{right}}$ må vi multiplisere begge sider med $\\var{denom1}$ og by $\\var{denom2}$ for å bli kvitt alle brøkene, deretter får vi alle $x$'ene på ene siden og tallene på andre siden,og til slutt deler vi begge sidene på koeffisienten til $x$ for å få $x$ alene.
\n\n| $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}}$ | \n$=$ | \n$\\var{right}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{\\left(\\frac{x+\\var{add}}{\\var{denom1}}\\right)\\cdot\\var{denom1}+\\left(\\frac{x}{\\var{denom2}}\\right)\\cdot\\var{denom1}}$ | \n$=$ | \n$\\var{right}\\cdot \\var{denom1}$ | \n(multipliserer alle ledd med $\\var{denom1}$) | \n
| \n | \n | \n | \n |
| $\\displaystyle{x+\\var{add}+\\frac{\\var{denom1}x}{\\var{denom2}}}$ | \n$=$ | \n$\\var{r1}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{(x+\\var{add})\\cdot\\var{denom2}+\\left(\\frac{\\var{denom1}x}{\\var{denom2}}\\right)\\cdot\\var{denom2}}$ | \n$=$ | \n$\\var{r1}\\cdot\\var{denom2}$ | \n(multipliserer alle ledd med $\\var{denom2}$) | \n
| \n | \n | \n | \n |
| $\\displaystyle{\\var{denom2}x+\\var{a2}+\\var{denom1}x}$ | \n$=$ | \n$\\var{r12}$ | \n\n |
| \n | \n | \n | \n |
| $\\var{sumdeno}x+\\var{a2}$ | \n$=$ | \n$\\var{r12}$ | \n(samler ledd av samme type) | \n
| \n | \n | \n | \n |
| $\\var{sumdeno}x$ | \n$=$ | \n$\\var{r12}-\\var{a2}$ | \n(samler ledd av samme type) | \n
| \n | \n | \n | \n |
| $\\var{sumdeno}x$ | \n$=$ | \n$\\var{top}$ | \n\n |
| \n | \n | \n | \n |
| $x$ | \n$=$ | \n$\\displaystyle{\\simplify{{top}/({sumdeno})}} $ | \n(deler med koeffisienten til $x$) | \n
Løs $\\simplify{{l}({m}w-{n}) = {p}w+{q}}$
\n$w=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansA", "maxValue": "ansA", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": "50", "displayAnswer": "", "showFractionHint": true, "notationStyles": ["si-fr", "plain-eu"], "correctAnswerStyle": "plain-eu"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Gitt $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}=\\var{g}$,
\n$y=$ [[0]].
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansB", "maxValue": "ansB", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": "50", "displayAnswer": "", "showFractionHint": true, "notationStyles": ["si-fr", "plain-eu"], "correctAnswerStyle": "plain-eu"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Løs $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}=\\var{right}}$.
\n$x=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansD", "maxValue": "ansD", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": "50", "displayAnswer": "", "showFractionHint": true, "notationStyles": ["si-fr", "plain-eu"], "correctAnswerStyle": "plain-eu"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}