// Numbas version: finer_feedback_settings {"name": "Vectors: scalar multiplication of column vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Vectors: scalar multiplication of column vectors", "tags": [], "metadata": {"description": "

Part 1: multiply a 3D vector by an integer scalar
Part 2: perform scalar multiplication and subtraction in one expression with two 3D vectors

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Perform the following scalar multiplications of column vectors

", "advice": "

Part A
In this part, you were asked to multiply a scalar by a 3-dimensional vector.  The result is another 3-dimensional vector.  To perform the operation, multiply each element (number) of the vector by the number (scalar) which sits outside the vector.  For example,

\n

$$\\var{Z1}\\var{A}=\\begin{bmatrix}\\var{Z1}\\times\\var{A1}\\\\\\var{Z1}\\times\\var{A2}\\\\\\var{Z1}\\times\\var{A3}\\end{bmatrix}=\\begin{bmatrix}\\var{Z1*A1}\\\\\\var{Z1*A2}\\\\\\var{Z1*A3}\\end{bmatrix}.$$

\n

Part B
In this part, you are asked to compine the ideas of scalar addition/subtraction from subsection 2.2 with some scalar multiplication.  You should follow the order of operations (BODMAS) that you are used to, sop perform the multiplications first.  For example,

\n

$$\\var{Z2}\\var{A}-\\var{Z3}\\var{B}=
\\begin{bmatrix}\\var{Z2}\\times\\var{A1}\\\\\\var{Z2}\\times\\var{A2}\\\\\\var{Z2}\\times\\var{A3}\\end{bmatrix}-\\begin{bmatrix}\\var{Z3}\\times\\var{B1}\\\\\\var{Z3}\\times\\var{B2}\\\\\\var{Z3}\\times\\var{B3}\\end{bmatrix}=
\\begin{bmatrix}\\var{Z2*A1}-\\var{Z3*B1}\\\\\\var{Z2*A2}-\\var{Z3*B2}\\\\\\var{Z2*A3}-\\var{Z3*B3}\\end{bmatrix}=
\\var{(Z2*A)-(Z3*B)}.$$

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Z1": {"name": "Z1", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "Z2": {"name": "Z2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "Z3": {"name": "Z3", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "vector(A1,A2,A3)", "description": "", "templateType": "anything", "can_override": false}, "A1": {"name": "A1", "group": "Ungrouped variables", "definition": "random(-4..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "A2": {"name": "A2", "group": "Ungrouped variables", "definition": "random(-4..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "A3": {"name": "A3", "group": "Ungrouped variables", "definition": "random(-4..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "vector(B1,B2,B3)", "description": "", "templateType": "anything", "can_override": false}, "B1": {"name": "B1", "group": "Ungrouped variables", "definition": "random(-4..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "B2": {"name": "B2", "group": "Ungrouped variables", "definition": "random(-4..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "B3": {"name": "B3", "group": "Ungrouped variables", "definition": "random(-4..9 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Z1", "Z2", "Z3", "A1", "A2", "A3", "A", "B", "B1", "B2", "B3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{Z1}\\var{A}$

", "correctAnswer": "Z1*A", "correctAnswerFractions": false, "numRows": "3", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{Z2}\\var{A}-\\var{Z3}\\var{B}$

", "correctAnswer": "vector(Z2*A1-Z3*B1,Z2*A2-Z3*B2,Z2*A3-Z3*B3)", "correctAnswerFractions": false, "numRows": "3", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Will Roberts", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/32402/"}], "resources": []}]}], "contributors": [{"name": "Will Roberts", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/32402/"}]}