// Numbas version: finer_feedback_settings {"name": "normal_3", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"pass": {"name": "pass", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "({pass_rate}-{m1})/{sd}"}, "n": {"name": "n", "description": "", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(1..2.5#0.1)"}, "pfail": {"name": "pfail", "description": "
prob of failing
", "templateType": "anything", "group": "Ungrouped variables", "definition": "normalcdf(pass,0,1)"}, "pass_rate": {"name": "pass_rate", "description": "passrate
", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(40..50#5)"}, "sd": {"name": "sd", "description": "", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(6..11#1)"}, "m1": {"name": "m1", "description": "", "templateType": "randrange", "group": "Ungrouped variables", "definition": "random(55..70#1)"}, "m2": {"name": "m2", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "{m1}+{n}*{sd}"}, "p1": {"name": "p1", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "normalcdf({n},0,1)"}}, "variable_groups": [], "name": "normal_3", "preamble": {"css": "", "js": ""}, "statement": "A large group of students took a test in Maths and the final grades have a mean of \\(\\var{m1}\\)% and a standard deviation of \\(\\var{sd}\\)%.
", "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": ""}, "ungrouped_variables": ["m1", "sd", "n", "m2", "p1", "pass", "pfail", "pass_rate"], "parts": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "type": "gapfill", "gaps": [{"showFeedbackIcon": true, "minValue": "(1-{p1})*100", "variableReplacements": [], "correctAnswerStyle": "plain", "precisionType": "dp", "allowFractions": false, "precision": "1", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "mustBeReduced": false, "mustBeReducedPC": 0, "scripts": {}, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "maxValue": "(1-{p1})*100", "marks": 1, "precisionPartialCredit": 0, "type": "numberentry", "showPrecisionHint": false, "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"]}], "showCorrectAnswer": true, "prompt": "If we approximate the distribution of these grades by a normal distribution, what percentage of the students scored higher than \\(\\var{m2}\\)%?
\nGive your answer correct to one decimal place. [[0]]%
", "scripts": {}}, {"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "type": "gapfill", "gaps": [{"showFeedbackIcon": true, "minValue": "100*{pfail}", "variableReplacements": [], "correctAnswerStyle": "plain", "precisionType": "dp", "allowFractions": false, "precision": "1", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "mustBeReduced": false, "mustBeReducedPC": 0, "scripts": {}, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "maxValue": "100*{pfail}", "marks": 1, "precisionPartialCredit": 0, "type": "numberentry", "showPrecisionHint": false, "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"]}], "showCorrectAnswer": true, "prompt": "If the pass mark is \\(\\var{pass_rate}\\)% what percentage of the students should fail the test?
\nGive your answer correct to one decimal place. [[0]]%
", "scripts": {}}], "advice": "\\(X\\) has a mean of \\(\\var{m1}\\)% and a standard deviation of \\(\\var{sd}\\)%.
\n(a) Find the percentage of the students scored higher than \\(\\var{m2}\\)%
\n\\(P(X>\\var{m2})=P\\left(Z>\\frac{\\var{m2}-\\var{m1}}{\\var{sd}}\\right)\\)
\n\\(=P(Z>\\var{n})\\)
\n\\(=1-P(Z<\\var{n})\\)
\n\\(=1-\\var{p1}\\)
\n\\(=\\simplify{1-{p1}}\\)
\nThe percentage of the students scored higher than \\(\\var{m2}\\)% in the exam = \\(\\simplify{100*(1-{p1})}\\)%
\n\n(b) \\(P(Failing)=P(X<\\var{pass_rate})\\)
\n\\(=P\\left(Z<\\frac{\\var{pass_rate}-\\var{m1}}{\\var{sd}}\\right)\\)
\n\\(=P(Z<\\var{pass})\\)
\n\\(=1-P(Z<\\simplify{-{pass}})\\)
\n\\(=1-\\simplify{1-{pfail}}\\)
\n\\(=\\var{pfail}\\)
\nThe percentage of the students that should fail the test is thus \\(\\simplify{100*{pfail}}\\)%
", "variablesTest": {"maxRuns": 100, "condition": ""}, "extensions": ["stats"], "functions": {}, "rulesets": {}, "tags": [], "type": "question", "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}