// Numbas version: finer_feedback_settings {"name": "Multiple-choice questions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Multiple-choice questions", "tags": [], "metadata": {"description": "
These multiple-choice questions help you verify your understanding of key concepts from the lectures.
", "licence": "None specified"}, "statement": "Please answer the following multiple-choice questions. They are designed to help you verify your understanding of key concepts from the lectures.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of the following statements is true?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["Every unbiased estimator is consistent.", "Every consistent estimator is unbiased in the limit.", "An estimator can be biased yet consistent.", "An estimator can be unbiased but inconsistent if its variance goes to 0"], "matrix": [0, "0", "3", 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Let $\\underline{X} := (X_1, \\dotsc, X_n) \\sim f(\\theta)$, where $f(\\theta)$ is a distribution parametrised by $\\theta \\in \\mathbb{R}$ with probability density function $f(\\, \\cdot \\,; \\theta)$. Let $L(\\theta; \\underline{x})$ be the likelihood for a given realisation $\\underline{x}$ of $\\underline{X}$. Which of the following statements best describes the likelihood?
Which statement about a large-sample confidence interval for a parameter $\\theta$ based on the ML estimator is most correct?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["It contains the true value with probability $(1-\\alpha)$ for any realised data set.", "In repeated samples, approximately a proportion of $(1- \\alpha)$ of such intervals will contain the true value of $\\theta$.", "Its width always decreases at the rate $1 / n$.", "It is exact if the ML estimator is unbiased."], "matrix": [0, "3", 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Let $\\underline{X} = (X_1, ..., X_n)$ be a random sample from $f_X(\\theta)$, where $f_X(\\theta)$ is a distribution -- parameterised by $\\theta \\in \\mathbb{R}$ -- with twice differentiable probability density function $f_X(\\, \\cdot \\,; \\theta)$. Let $\\hat{\\theta} = h(\\underline{X})$ denote an estimator for $\\theta$. Conditional on $\\underline{X}$, which of the following correctly specifies the Fisher information at $\\hat{\\theta}$?
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Start by considering the Fisher information at some fixed (i.e., deterministic) value $\\theta'$ and then plug in the random variable $\\hat{\\theta} = h(\\underline{X})$ at the very end.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$- \\sum_{i=1}^n \\mathbb{E}\\biggl[\\frac{\\partial^2}{\\partial \\theta^2} \\log f_X(Z_i; \\theta)\\biggr]\\bigg|_{\\theta = h(\\underline{Z})}$, where $Z_1, \\dotsc, Z_n \\overset{\\mathrm{iid}}{\\sim} f_X(\\theta)$ and $\\underline{Z} := (Z_1, \\dotsc, Z_n)$.", "$- \\sum_{i=1}^n \\mathbb{E}\\biggl[\\frac{\\partial^2}{\\partial \\theta^2} \\log f_X(Z_i; \\theta)\\bigg|_{\\theta = h(\\underline{Z})}\\biggr]$, where $Z_1, \\dotsc, Z_n \\overset{\\mathrm{iid}}{\\sim} f_X(h(\\underline{X}))$ and $\\underline{Z} := (Z_1, \\dotsc, Z_n)$.", "$- \\sum_{i=1}^n \\mathbb{E}\\biggl[\\frac{\\partial^2}{\\partial \\theta^2} \\log f_X(Z_i; \\theta)\\biggr]\\bigg|_{\\theta = h(\\underline{X})}$, where $Z_1, \\dotsc, Z_n \\overset{\\mathrm{iid}}{\\sim} f_X(h(\\underline{X}))$ and $\\underline{Z} := (Z_1, \\dotsc, Z_n)$.", "$- \\sum_{i=1}^n \\mathbb{E}\\biggl[\\frac{\\partial^2}{\\partial \\theta^2} \\log f_X(Z_i; \\theta)\\biggr]\\bigg|_{\\theta = h(\\underline{X})}$, where $Z_1, \\dotsc, Z_n \\overset{\\mathrm{iid}}{\\sim} f_X(\\theta)$ and $\\underline{Z} := (Z_1, \\dotsc, Z_n)$."], "matrix": [0, 0, "5", 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Which statement best describes the intuitive meaning of Fisher information $\\mathcal{I}(\\theta)$ where $\\theta$ is the true parameter value?
Consider some probabilistic model parameterised by $\\underline{\\theta} \\in \\Theta$ and assume that you wish to perform a likelihood-ratio test for some null hypothesis $H_0: \\underline{\\theta} \\in \\Theta_0$.
\nWhat is the number of degrees of freedom of the asymptotic chi-square distribution of the likelihood-ratio test statistic if $\\Theta = \\mathbb{R}^3$ and $\\Theta_0 = \\{0\\} \\times \\mathbb{R} \\times \\{1\\}$?
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Think about how many free parameters you need to represent arbitrary elements of $\\Theta_0$.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["1", "2", "3"], "matrix": [0, "3", 0], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider some probabilistic model parameterised by $\\underline{\\theta} \\in \\Theta$ and assume that you wish to perform a likelihood-ratio test for some null hypothesis $H_0: \\underline{\\theta} \\in \\Theta_0$.
\nWhat is the number of degrees of freedom of the asymptotic chi-square distribution of the likelihood-ratio test statistic if $\\Theta = \\mathbb{R}^5$ and $\\Theta_0 = \\{(\\theta_1,\\dotsc,\\theta_5)^{\\mathrm{T}} \\in \\Theta \\mid \\theta_1 = - 10 \\theta_2\\}$?
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Think about how many free parameters you need to represent arbitrary elements of $\\Theta_0$.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["1", "2", "3", "4", "5"], "matrix": ["3", 0, 0, "0", 0], "distractors": ["", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider some probabilistic model parameterised by $\\underline{\\theta} \\in \\Theta$ and assume that you wish to perform a likelihood-ratio test for some null hypothesis $H_0: \\underline{\\theta} \\in \\Theta_0$.
\nWhat is the number of degrees of freedom of the asymptotic chi-square distribution of the likelihood-ratio test statistic if $\\Theta = \\mathbb{R}^5$ and $\\Theta_0 = \\{(\\theta_1,\\dotsc,\\theta_5)^{\\mathrm{T}} \\in \\Theta \\mid \\theta_1 = - 10 \\theta_2, - \\theta_3 / 10 = \\theta_2, \\theta_1 = \\theta_3\\}$?
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Think about how many free parameters you need to represent arbitrary elements of $\\Theta_0$.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["1", "2", "3", "4", "5"], "matrix": [0, "3", 0, 0, 0], "distractors": ["", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of the following best describes the (realised) p-value in a hypothesis test for a given realisation of the data?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["The (realised) p-value is the probability of a type-I error.", "If the (realised) p-value is larger than the chosen significance level, we reject the null hypothesis.", "The (realised) p-value is the probability that the null hypothesis is true.", "The (realised) p-value tells us the largest significance level at which we could have still rejected the null hypothesis for the given realisation of the data."], "matrix": [0, 0, 0, "3"], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Assuming that the null hypothesis is correct, what is the distribution of the p-value before we have observed the realisation of the data? For simplicity, you may assume that the test statistic is continuous.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "For some random variable $X$ with continuous cumulative distribution function $F$ and $u \\in (0,1)$, compute the probability $\\mathbb{P}(F(X) \\leq u)$ to determine the distribution of $F(X)$ which then immediately gives you the distribution of $1 - F(X)$.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$\\mathrm{Uniform}(0,1)$.", "$\\mathrm{Normal}(0,1)$.", "$\\mathrm{Beta}(2, 2)$.", "$\\mathrm{Poisson}(1)$."], "matrix": ["5", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Axel Finke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/31812/"}], "resources": []}]}], "contributors": [{"name": "Axel Finke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/31812/"}]}