// Numbas version: finer_feedback_settings {"name": "part a and b Hina's copy of Julie's copy of Q3 Given 2 lines, Coordinate Geometry 1", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"inter": {"type": "html", "parameters": [], "language": "javascript", "definition": "\n var a = Numbas.jme.unwrapValue(scope.variables.p_m);\n var b = Numbas.jme.unwrapValue(scope.variables.p_c);\n var c = Numbas.jme.unwrapValue(scope.variables.r_m);\n var d = Numbas.jme.unwrapValue(scope.variables.r_c);\n var miny = Numbas.jme.unwrapValue(scope.variables.miny);\n var maxy = Numbas.jme.unwrapValue(scope.variables.maxy);\n var minx = Numbas.jme.unwrapValue(scope.variables.minx);\n var maxx = Numbas.jme.unwrapValue(scope.variables.maxx);\n var div = Numbas.extensions.jsxgraph.makeBoard('600px','600px',\n {boundingBox:[minx,maxy,maxx,miny],\n axis:true,\n showNavigation:false,\n grid:true});\n var brd = div.board; \n var li1=brd.create('line',[[0,-b],[1,a-b]],{fixed:true,name:'Line P',withLabel:true});\n var li2=brd.create('line',[[0,d],[1,c+d]],{fixed:true,name:'Line R',withLabel:true});\n \n\n return div;\n "}}, "tags": [], "advice": "

P => 3x - 2y -6 = 0 and R => 2x + 3y -35 = 0

\n

a) point a(4,-2) on, above or below P

\n

P =>  y = $\\frac{3}{2}$x - 3

\n

$\\frac{3}{2}$(4) - 3 = 3

\n

-2 < 3

\n

=> point a is below P

\n

b) point b(16,1) on, above or below R

\n

R =>  y = -$\\frac{2}{3}$x + $\\frac{35}{3}$

\n

-$\\frac{2}{3}$(16) + $\\frac{35}{3}$ = 1

\n

1 = 1

\n

=> point b is on R

\n

c) Find the slope of P and the slope of R.

\n

slope of P (m1) = $ \\frac{3}{2}$

\n

slope of R (m2) = $ -\\frac{2}{3}$

\n

$ \\frac{3}{2} \\times  -\\frac{2}{3}$ = -1 

\n

=> P is perpendicular to R

\n

d) 

\n

3x - 2y -6 = 0     (X 3) => 9x - 6y = 18

\n

2x + 3y -35 = 0  (X 2) => 4x + 6y = 70

\n

=> 13x = 88 

\n

x = 6.77

\n

3(6.77) - 2y -6 = 0

\n

y = 7.16

\n

point of intersection = (6.77 , 7.16)

\n

e) x-axis intersect of P

\n

y=0 => 3x - 2(0) -6 = 0 => x = 2

\n

point = (2 , 0)

\n

y-axis intersect of P

\n

x=0 => 3(0) - 2y -6 = 0 => y = -3

\n

point = (0 , -3)

\n

f) $(\\frac{4+16}{2},\\frac{-2+1}{2}) = (10,-\\frac{1}{2})$

\n

g) Using the formula dis = $\\sqrt((X2-X1)^2 + (Y2-Y1)^2)$, where (X1,Y1) = b(16,1) and (X2,Y2) = a(4,-2).

\n

$\\sqrt((4-16)^2 + (-2-1)^2)$

\n

$\\sqrt(144 + 9) = 12.37$

\n

h) Point (a,2) is on R

\n

2x + 3y -35 = 0

\n

2(a) + 3(2) -35 = 0

\n

2a = 29

\n

a = 14.5

\n

i) Line parallel to R contains (-2,5) and (p,4)

\n

$\\frac{4-5}{p-(-2)} = -\\frac{2}{3}$

\n

$p = -\\frac{1}{2}$

", "parts": [{"scripts": {}, "choices": ["

Above

", "

Below

", "

On

"], "maxMarks": 0, "showFeedbackIcon": true, "type": "1_n_2", "displayType": "radiogroup", "variableReplacements": [], "matrix": "mark1a", "showCorrectAnswer": true, "minMarks": 0, "prompt": "

Is the point a($\\var{a[0]}$,$\\var{a[1]}$) on, above or below the line P?

", "shuffleChoices": true, "variableReplacementStrategy": "originalfirst", "displayColumns": 0, "marks": 0}, {"scripts": {}, "choices": ["

Above

", "

Below

", "

On

"], "maxMarks": 0, "showFeedbackIcon": true, "type": "1_n_2", "displayType": "radiogroup", "variableReplacements": [], "matrix": "mark2a", "showCorrectAnswer": true, "minMarks": 0, "prompt": "

Is the point b($\\var{b[0]}$,$\\var{b[1]}$) on, above or below the line R?

", "shuffleChoices": true, "variableReplacementStrategy": "originalfirst", "displayColumns": 0, "marks": 0}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

Give answer in fraction form.

\n

Find the slope of line P:

\n

[[0]]

\n

Find the slope of line R:

\n

[[1]]

\n

Is P perpendicular to R.

\n

[[2]]

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{pr[0]}/{pr[1]}", "correctAnswerFraction": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{pr[0]}/{pr[1]}", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "minValue": "-{pr[1]}/{pr[0]}", "correctAnswerFraction": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "-{pr[1]}/{pr[0]}", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "checkvariablenames": false, "checkingtype": "absdiff", "answer": "yes", "showFeedbackIcon": true, "type": "jme", "showpreview": true, "variableReplacements": [], "vsetrangepoints": 5, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "marks": 0}], "type": "gapfill", "marks": 0, "variableReplacements": []}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

Find the point of intersection of P and R.

\n

Give answer to 2 decimal places.

\n

([[0]],[[1]])

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{x4}-0.01", "correctAnswerFraction": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{x4}+0.01", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "minValue": "{y4}-0.01", "correctAnswerFraction": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{y4}+0.01", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}], "type": "gapfill", "marks": 0, "variableReplacements": []}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

Find the points, c and d, where R intersects both axes.

\n

Give answer in fraction form.

\n

Point c, R intersects x-axis = ([[0]],[[1]])

\n

Point d, R intersects y-axis = ([[2]],[[3]])

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{c2}/{pr[1]}-0.01", "correctAnswerFraction": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{c2}/{pr[1]}+0.01", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "minValue": "0", "correctAnswerFraction": false, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "0", "allowFractions": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "minValue": "0", "correctAnswerFraction": false, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "0", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "minValue": "{c2}/{pr[0]}-0.01", "correctAnswerFraction": false, "strictPrecision": true, "variableReplacements": [], "precisionType": "dp", "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "precisionPartialCredit": "100", "maxValue": "{c2}/{pr[0]}+0.01", "allowFractions": false, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "precision": 0, "marks": 1, "showPrecisionHint": true}], "type": "gapfill", "marks": 0, "variableReplacements": []}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

Find the mid-point of the line segment ab.

\n

Give answer to 2 decimal points.

\n

([[0]],[[1]])

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{x5}", "correctAnswerFraction": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{x5}", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}, {"scripts": {}, "minValue": "{y5}", "correctAnswerFraction": false, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{y5}", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}], "type": "gapfill", "marks": 0, "variableReplacements": []}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

Calculate the distance from b to a.

\n

Give answer to 2 decimal places.

\n

ans = [[0]]

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{dis}-0.1", "correctAnswerFraction": false, "strictPrecision": false, "variableReplacements": [], "precisionType": "dp", "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "maxValue": "{dis}+0.1", "allowFractions": false, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "precision": "2", "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "marks": 0, "variableReplacements": []}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

The point (a , $\\var{n6}$) is on  P, find the value of a.

\n

Give answer to 2 decimal places.

\n

a = [[0]]

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{ans7}-0.01", "correctAnswerFraction": false, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{ans7}+0.01", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}], "type": "gapfill", "marks": 0, "variableReplacements": []}, {"scripts": {}, "showCorrectAnswer": true, "prompt": "

The line containing ($\\var{neg8}$ , $\\var{pos8[0]}$) and (p , $\\var{pos8[1]}$) is parallel to R. Evaluate p. Give your answer correct to two decimal places.

\n

p = [[0]]

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"scripts": {}, "minValue": "{ans8}-0.01", "correctAnswerFraction": false, "variableReplacements": [], "showFeedbackIcon": true, "type": "numberentry", "correctAnswerStyle": "plain", "maxValue": "{ans8}+0.01", "allowFractions": true, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "marks": 1}], "type": "gapfill", "marks": 0, "variableReplacements": []}], "metadata": {"description": "

Reading information from the equation of the line. Graph shown

\n

Rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["pr", "c1", "c2", "a", "b", "val1", "above1", "below1", "on1", "mark1a", "mark1b", "mark1o", "val2", "above2", "below2", "on2", "mark2a", "mark2b", "mark2o"], "extensions": ["jsxgraph"], "statement": "

{inter()}

\n

P is the line $\\var{pr[0]}x - \\var{pr[1]}y - \\var{c1} = 0$ and R is the line $\\var{pr[1]}x + \\var{pr[0]}y - \\var{c2} = 0$.

\n

\n

", "variables": {"above1": {"templateType": "anything", "definition": "if(a[1] > val1,true,false)", "description": "", "group": "Ungrouped variables", "name": "above1"}, "dis": {"templateType": "anything", "definition": "sqrt(((a[1]-b[1])^2) + ((a[0]-b[0])^2))", "description": "", "group": "vii", "name": "dis"}, "pos8": {"templateType": "anything", "definition": "shuffle(3..7)[0..2]", "description": "", "group": "viii", "name": "pos8"}, "mark3": {"templateType": "anything", "definition": "[if(perp=true,1,0),if(perp=true,0,1)]", "description": "", "group": "iii", "name": "mark3"}, "mark1a": {"templateType": "anything", "definition": "[if(above1=true,1,0),if(below1=true,1,0),if(below1=true,1,0)]", "description": "", "group": "Ungrouped variables", "name": "mark1a"}, "mark2a": {"templateType": "anything", "definition": "[if(above2=true,1,0),if(above2=true,1,0),if(below2=true,1,0)]", "description": "", "group": "Ungrouped variables", "name": "mark2a"}, "p_c": {"templateType": "anything", "definition": "precround(c1/pr[1],2)", "description": "", "group": "graph", "name": "p_c"}, "dy": {"templateType": "anything", "definition": "c2/pr[1]", "description": "", "group": "v and vi", "name": "dy"}, "mark2b": {"templateType": "anything", "definition": "[if(below2=true,1,0),if(below2=true,0,1)]", "description": "", "group": "Ungrouped variables", "name": "mark2b"}, "m_p": {"templateType": "anything", "definition": "pr[0]/pr[1]", "description": "", "group": "iii", "name": "m_p"}, "miny": {"templateType": "anything", "definition": "min(0,ceil((p_m*r_c-p_c*r_m)/(p_m-r_m))-5)", "description": "", "group": "graph", "name": "miny"}, "x4": {"templateType": "anything", "definition": "((pr[1]*c2) + (pr[0]*c1))/((pr[0]*pr[0])+(pr[1]*pr[1]))", "description": "", "group": "iv", "name": "x4"}, "mark1b": {"templateType": "anything", "definition": "[if(below1=true,1,0),if(below1=true,0,1)]", "description": "", "group": "Ungrouped variables", "name": "mark1b"}, "val1": {"templateType": "anything", "definition": "((pr[0]/pr[1])*a[0])-((c1/pr[1]))", "description": "", "group": "Ungrouped variables", "name": "val1"}, "ans7": {"templateType": "anything", "definition": "(c1+(pr[1]*n6))/pr[0]", "description": "", "group": "vii", "name": "ans7"}, "maxy": {"templateType": "anything", "definition": "max(0,ceil((p_m*r_c-p_c*r_m)/(p_m-r_m))+5)", "description": "", "group": "graph", "name": "maxy"}, "above2": {"templateType": "anything", "definition": "if(b[1] > val2,true,false)", "description": "", "group": "Ungrouped variables", "name": "above2"}, "r_c": {"templateType": "anything", "definition": "precround(c2/pr[0],2)", "description": "", "group": "graph", "name": "r_c"}, "minx": {"templateType": "anything", "definition": "min(0,ceil((r_c-p_c)/(p_m-r_m))-5)", "description": "", "group": "graph", "name": "minx"}, "ans8": {"templateType": "anything", "definition": "((pos8[1]-pos8[0])/m_r)+neg8", "description": "", "group": "viii", "name": "ans8"}, "b": {"templateType": "anything", "definition": "shuffle(7..15)[0..2]", "description": "", "group": "Ungrouped variables", "name": "b"}, "c2": {"templateType": "anything", "definition": "random(25..39)", "description": "", "group": "Ungrouped variables", "name": "c2"}, "below2": {"templateType": "anything", "definition": "if(b[1] < val2,true,false)", "description": "", "group": "Ungrouped variables", "name": "below2"}, "val2": {"templateType": "anything", "definition": "((-pr[1]/pr[0])*b[0])+((c2/pr[0]))", "description": "", "group": "Ungrouped variables", "name": "val2"}, "maxx": {"templateType": "anything", "definition": "max(0,ceil((r_c-p_c)/(p_m-r_m))+5)", "description": "", "group": "graph", "name": "maxx"}, "mark2o": {"templateType": "anything", "definition": "[if(on2=true,1,0),if(on2=true,0,1)]", "description": "", "group": "Ungrouped variables", "name": "mark2o"}, "m_r": {"templateType": "anything", "definition": "-precround((pr[1]/pr[0]),2)", "description": "", "group": "iii", "name": "m_r"}, "x5": {"templateType": "anything", "definition": "(a[0]+b[0])/2", "description": "", "group": "v and vi", "name": "x5"}, "n6": {"templateType": "anything", "definition": "random(2..6)", "description": "", "group": "vii", "name": "n6"}, "p_m": {"templateType": "anything", "definition": "precround(pr[0]/pr[1],2)", "description": "", "group": "graph", "name": "p_m"}, "below1": {"templateType": "anything", "definition": "if(a[1] < val1,true,false)", "description": "", "group": "Ungrouped variables", "name": "below1"}, "cx": {"templateType": "anything", "definition": "c2/pr[0]", "description": "", "group": "v and vi", "name": "cx"}, "mark1o": {"templateType": "anything", "definition": "[if(on1=true,1,0),if(on1=true,0,1)]", "description": "", "group": "Ungrouped variables", "name": "mark1o"}, "r_m": {"templateType": "anything", "definition": "precround(-pr[1]/pr[0],2)", "description": "", "group": "graph", "name": "r_m"}, "y5": {"templateType": "anything", "definition": "(a[1]+b[1])/2", "description": "", "group": "v and vi", "name": "y5"}, "on1": {"templateType": "anything", "definition": "if(a[1] = val1,true,false)", "description": "", "group": "Ungrouped variables", "name": "on1"}, "c1": {"templateType": "anything", "definition": "random(5..9)", "description": "", "group": "Ungrouped variables", "name": "c1"}, "y4": {"templateType": "anything", "definition": "((pr[0]*c2) - (pr[1]*c1))/((pr[0]*pr[0])+(pr[1]*pr[1]))", "description": "", "group": "iv", "name": "y4"}, "pr": {"templateType": "anything", "definition": "shuffle(2..5 except 4)[0..2]", "description": "", "group": "Ungrouped variables", "name": "pr"}, "on2": {"templateType": "anything", "definition": "if(b[1] = val2,true,false)", "description": "", "group": "Ungrouped variables", "name": "on2"}, "a": {"templateType": "anything", "definition": "shuffle(2..5)[0..2]", "description": "", "group": "Ungrouped variables", "name": "a"}, "perp": {"templateType": "anything", "definition": "if(m_p*m_r = -1,true,false)", "description": "", "group": "iii", "name": "perp"}, "neg8": {"templateType": "anything", "definition": "random(-6..-2)", "description": "", "group": "viii", "name": "neg8"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [{"variables": ["x4", "y4"], "name": "iv"}, {"variables": ["m_p", "m_r", "perp", "mark3"], "name": "iii"}, {"variables": ["x5", "y5", "cx", "dy"], "name": "v and vi"}, {"variables": ["dis", "n6", "ans7"], "name": "vii"}, {"variables": ["neg8", "pos8", "ans8"], "name": "viii"}, {"variables": ["p_m", "p_c", "r_m", "r_c", "minx", "maxx", "miny", "maxy"], "name": "graph"}], "preamble": {"css": "", "js": ""}, "rulesets": {}, "name": "part a and b Hina's copy of Julie's copy of Q3 Given 2 lines, Coordinate Geometry 1", "type": "question", "contributors": [{"name": "Hina Ahmed", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1160/"}]}]}], "contributors": [{"name": "Hina Ahmed", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1160/"}]}