// Numbas version: finer_feedback_settings {"name": "EG3101 EG5116 EG4103 Matrices: adding and subtracting two 3x3 matrices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["matrices"], "variables": {"matrices": {"group": "Ungrouped variables", "description": "

A couple of random matrices to add

", "definition": "repeat(matrix(repeat(repeat(random(0..10)*random(1,1,1,-1),3),3)),3)", "templateType": "anything", "name": "matrices"}}, "name": "EG3101 EG5116 EG4103 Matrices: adding and subtracting two 3x3 matrices", "variable_groups": [], "preamble": {"js": "", "css": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Adding and subtracting two 3x3 matrices.

"}, "statement": "

You will possibly need to adjust the number of rows and the number of columns your solution requires by entering the correct values for your solution; the template will then alter to hold your solution.

", "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "advice": "

Remember : matrix multiplication requires each row of the first matrix A be multiplied by each column of the second matrix B:

\n

If \\[  A=\\left( \\begin{array}{ccc}
a & b & c  \\\\d & e & f\\\\g & h & j \\end{array} \\right),\\]

\n

and \\[ B=\\left( \\begin{array}{ccc}
k & l & m \\\\n & p & q\\\\r & s & t\\end{array} \\right)\\],

\n

then \\[ A+B=\\left( \\begin{array}{ccc}
a+k & b+l & c+m\\\\d+n & e+p & f+q   \\\\g+r & h+s & j+t
\\end{array} \\right)\\]

\n

\\[ A-B=\\left( \\begin{array}{ccc}
a-k & b-l & c-m\\\\d-n & e-p & f-q   \\\\g-r & h-s & j-t
\\end{array} \\right)\\]

\n

 

\n

 

\n

", "extensions": [], "parts": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "showFeedbackIcon": true, "marks": 0, "prompt": "

What is $\\simplify{{matrices[0]}+{matrices[1]}}$?

\n

[[0]]

", "gaps": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "allowResize": true, "tolerance": 0, "type": "matrix", "numColumns": 1, "allowFractions": false, "scripts": {}, "marks": 1, "correctAnswerFractions": false, "numRows": 1, "markPerCell": false, "correctAnswer": "matrices[0]+matrices[1]"}], "variableReplacements": [], "type": "gapfill"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "showFeedbackIcon": true, "marks": 0, "prompt": "

What is $\\simplify{{matrices[0]}-{matrices[1]}}$?

\n

[[0]]

", "gaps": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "allowResize": true, "tolerance": 0, "type": "matrix", "numColumns": 1, "allowFractions": false, "scripts": {}, "marks": 1, "correctAnswerFractions": false, "numRows": 1, "markPerCell": false, "correctAnswer": "matrices[0]-matrices[1]"}], "variableReplacements": [], "type": "gapfill"}], "rulesets": {}, "type": "question", "contributors": [{"name": "bryan pearce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/347/"}]}]}], "contributors": [{"name": "bryan pearce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/347/"}]}