// Numbas version: finer_feedback_settings {"name": "EG5116 EG4103 Matrices: Cramers Rule applied to 3 simultaneous equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["matrixA", "a11", "a12", "a21", "a22", "a13", "a23", "a31", "a32", "a33", "x1", "x2", "x3", "c1", "c2", "c3"], "name": "EG5116 EG4103 Matrices: Cramers Rule applied to 3 simultaneous equations", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

If \\[  A=\\left( \\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\\\a_{21} & a_{22} & a_{23}\\\\ a_{31} & a_{32} & a_{33}\\end{array} \\right),\\]

\n

\\[  C=\\left( \\begin{array}{ccc}
c_{1} \\\\ c_{2} \\\\c_{3} \\end{array} \\right),\\]

\n

Cramer's Rule : ${x_1}=\\frac{\\Delta_1}{\\Delta_0}$ ,  ${x_2}=\\frac{\\Delta_2}{\\Delta_0}$ , ${x_3}=\\frac{\\Delta_3}{\\Delta_0}$

\n

Where:\\[ \\Delta_0=\\left| \\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\\\a_{21} & a_{22} & a_{23}\\\\ a_{31} & a_{32} & a_{33}\\end{array} \\right|\\]

\n

\\[ \\Delta_1=\\left| \\begin{array}{ccc}
c_{1} & a_{12} & a_{13} \\\\c_{2} & a_{22} & a_{23}\\\\ c_{3} & a_{32} & a_{33}\\end{array} \\right|\\]

\n

\\[ \\Delta_2=\\left| \\begin{array}{ccc}
a_{11} & c_{1} & a_{13} \\\\a_{21} & c_{2} & a_{23}\\\\ a_{31} & c_{3} & a_{33}\\end{array} \\right|\\]

\n

\\[ \\Delta_3=\\left| \\begin{array}{ccc}
a_{11} & a_{12} & c_{1} \\\\a_{21} & a_{22} & c_{2}\\\\ a_{31} & a_{32} & c_{3}\\end{array} \\right|\\]

\n

 

\n

 

\n

 

\n

", "rulesets": {}, "parts": [{"prompt": "

What is the determinant of A=$\\var{matrixA}$? i.e $\\Delta_0$

\n

[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "det(matrixA)", "minValue": "det(matrixA)", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Calculate $\\Delta_1$ [[0]]

\n

Hence, calculate ${x_1}$  [[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "det(matrixA1)", "minValue": "det(matrixA1)", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{x1}", "minValue": "{x1}", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Calculate $\\Delta_2$[[0]]

\n

Hence, calculate ${x_2}$  [[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "det(matrixA2)", "minValue": "det(matrixA2)", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{x2}", "minValue": "{x2}", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Calculate $\\Delta_3$[[0]]

\n

Hence, calculate ${x_3}$  [[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "det(matrixA3)", "minValue": "det(matrixA3)", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{x3}", "minValue": "{x3}", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Using Cramer's rule , solve the system of equations:

\n

$\\var{a11}x_1+\\var{a12}x_2+\\var{a13}x_3=\\var{c1}$

\n

$\\var{a21}x_1+\\var{a22}x_2+\\var{a23}x_3=\\var{c2}$

\n

$\\var{a31}x_1+\\var{a32}x_2+\\var{a33}x_3=\\var{c3}$

\n

\n

", "variable_groups": [{"variables": ["matrixA1", "matrixA2", "matrixA3"], "name": "Cramer determinants"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a33": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a33", "description": ""}, "a21": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a21", "description": ""}, "a22": {"definition": "random(0..100 except(a21*a12/a11))/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a22", "description": ""}, "a23": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a23", "description": ""}, "a11": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a11", "description": ""}, "a13": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a13", "description": ""}, "a12": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a12", "description": ""}, "a31": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a31", "description": ""}, "matrixA": {"definition": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "templateType": "anything", "group": "Ungrouped variables", "name": "matrixA", "description": ""}, "c3": {"definition": "a31*x1+a32*x2+a33*x3", "templateType": "anything", "group": "Ungrouped variables", "name": "c3", "description": ""}, "matrixA3": {"definition": "matrix([a11,a12,c1],[a21,a22,c2],[a31,a32,c3])", "templateType": "anything", "group": "Cramer determinants", "name": "matrixA3", "description": ""}, "matrixA2": {"definition": "matrix([a11,c1,a13],[a21,c2,a23],[a31,c3,a33])", "templateType": "anything", "group": "Cramer determinants", "name": "matrixA2", "description": ""}, "x3": {"definition": "random(-100..100 except 0)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "x3", "description": ""}, "x2": {"definition": "random(-100..100 except 0)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "x2", "description": ""}, "c2": {"definition": "a21*x1+a22*x2+a23*x3", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": ""}, "c1": {"definition": "a11*x1+a12*x2+a13*x3", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}, "x1": {"definition": "random(-100..100 except 0)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "x1", "description": ""}, "matrixA1": {"definition": "matrix([c1,a12,a13],[c2,a22,a23],[c3,a32,a33])", "templateType": "anything", "group": "Cramer determinants", "name": "matrixA1", "description": ""}, "a32": {"definition": "random(0..100)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "a32", "description": ""}}, "metadata": {"description": "

Cramers Rule applied to 3 simultaneous equations

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "bryan pearce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/347/"}]}]}], "contributors": [{"name": "bryan pearce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/347/"}]}