// Numbas version: finer_feedback_settings
{"name": "Input 6", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Input 6", "tags": ["Numbas", "arctan", "brackets", "functions", "input", "introduction", "numbas", "standard functions"], "advice": "", "rulesets": {}, "parts": [{"prompt": "
Input:
\n \n - $\\sin(\\cos(\\var{a}x)+\\var{b})$: [[0]]
\n - $\\cos(\\sin(\\var{b}x)+\\var{a})$: [[1]]
\n
", "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "sin(cos({a}x)+{b})", "checkvariablenames": false, "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "cos(sin({b}x)+{a})", "checkvariablenames": false, "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "Input:
\n \n - $\\displaystyle \\simplify[all]{Abs((x + {c}) / (x + {d}))}$: [[0]]
\n - $\\displaystyle \\simplify[all]{ln(Abs((x + {a}) / (x + {d})))}$: [[1]]
\n
", "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "abs((x + {c}) / (x + {d}))", "checkvariablenames": false, "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "ln(abs((x + {a}) / (x + {d})))", "checkvariablenames": false, "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "Input:
\n \n - $\\simplify[all]{{a} * t ^ { -b} * e ^ (( -{c}) * t) * Sin({b} * t) + (t + {d} * t ^ 3) * e ^ ({c} * t)}$: [[0]]
\n - $\\displaystyle \\simplify[all]{Arctan(({c} * y ^ 2 + {d}) / ((y + {a}) * (y + {b})))}$: [[1]]
\n
", "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "{a} * t ^ { -b} * e ^ (( -{c}) * t) * sin({b} * t) + (t + {d} * t ^ 3) * e ^ ({c} * t)", "checkvariablenames": false, "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "arctan(({c} * y ^ 2 + {d}) / ((y + {a}) * (y + {b})))", "checkvariablenames": false, "type": "jme"}], "type": "gapfill", "marks": 0.0}], "extensions": [], "statement": "Functions
\n The Numbas system recognises all standard functions, but you must use brackets for the arguments of the functions e.g. sin(x)
not sin x
, ln(a)
not ln a
.
\n The absolute value function is input as abs(a)
.
\n The inverse trigonometric functions arcsin(x)
, arccos(x)
and arctan(x)
are all recognized, and you input them as they are written.
\n Here are some examples for you to try.
\n If you want help, press Reveal answers at the bottom of the screen to see correct inputs.
", "variable_groups": [], "progress": "in-progress", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "random(2..9)", "name": "c"}, "b": {"definition": "random(3..9)", "name": "b"}, "d": {"definition": "random(2..9)", "name": "d"}}, "metadata": {"notes": "", "description": "Instructions on dealing with functions in Numbas.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}