// Numbas version: finer_feedback_settings {"name": "Julie's copy of Select a card and roll a dice", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

Please give your answers to 3 decimal places.

\n

A student selects one card at random from a pack of 52 playing cards and then rolls a dice once.

\n

Let event $A$ be that the card she picks is a $\\var{suit}$.

\n

Let event $B$ be that the number she rolls is greater than $\\var{n}$.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"js": "", "css": ""}, "functions": {}, "ungrouped_variables": ["n", "suit"], "variables": {"n": {"definition": "random(2..4)", "group": "Ungrouped variables", "name": "n", "description": "

number on dice is greater than n.

", "templateType": "anything"}, "suit": {"definition": "random ('diamond','spade','heart','club')", "group": "Ungrouped variables", "name": "suit", "description": "

suit

", "templateType": "anything"}}, "name": "Julie's copy of Select a card and roll a dice", "advice": "

The outcome of selecting the card is independent of (not effected by) the outcome of rolling the dice.

\n

If two events, $A$ and $B$, are independent then $P(A\\cap B)=P(A)\\times P(B)$.

\n

Part a)

\n
\n

Let $A$ represent the event that a $\\var{suit}$ is selected and let $B$ represent the event that a number greater than $\\var{n}$ is rolled.

\n

 $P(A)$ is $\\frac{13}{52}=\\frac{1}{4}$ and $P(B)$ is  $\\frac{\\var{6-n}}{6}$.

\n

Therefore the probability of drawing a $\\var{suit}$ and rolling a number greater than $\\var{n}$ is $ P(A) \\times P(B)=\\frac{1}{4} \\times \\frac{\\var{6-n}}{6}$. 

\n

Part b)

\n

\n

The probability that neither of these events occur is the probability of not drawing a $\\var{suit}$ which is $P(A^c)=\\frac{3}{4}$ mulitiplied by the probability of not rolling a number greater than $\\var{n}$ which is $P(B^c)=\\frac{\\var{n}}{6}$ .

\n

Part c)

\n

The probability that only one of these events occur is $P(A ^c\\cap B)+P(A \\cap B^c)=(\\frac{3}{4} \\times \\frac{\\var{6-n}}{6})+(\\frac{1}{4} \\times \\frac{\\var{n}}{6})$.

\n

Part d)

\n

The probability  that at least one of these two events will occur is $1- P$(neither of the events occur)$=1-(P(A^c)\\times P(B^c))= 1-(\\frac{3}{4}\\times \\frac{\\var{n}}{6})$

", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

A student selects a card from a deck of 52 and rolls a dice once.

\n

rebelmaths

"}, "parts": [{"marks": 1, "showPrecisionHint": false, "maxValue": "(1/4)*((6-n)/6)", "scripts": {}, "type": "numberentry", "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "prompt": "

Calculate the probability that the card she picks is a $\\var{suit}$ and the number she rolls is greater than $\\var{n}$.

", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "precisionType": "dp", "variableReplacements": [], "allowFractions": true, "minValue": "(1/4)*((6-n)/6)", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain"}, {"marks": 1, "showPrecisionHint": false, "maxValue": "(3/4)*(n/6)", "scripts": {}, "type": "numberentry", "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "prompt": "

Calculate the probability that neither of these two events will occur.

", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "precisionType": "dp", "variableReplacements": [], "allowFractions": true, "minValue": "(3/4)*(n/6)", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain"}, {"marks": 1, "showPrecisionHint": false, "maxValue": "(1/4)*(n/6)+(3/4)*((6-n)/6)", "scripts": {}, "type": "numberentry", "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "prompt": "

Calculate the probability that only one of these two events will occur.

", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "precisionType": "dp", "variableReplacements": [], "allowFractions": true, "minValue": "(1/4)*(n/6)+(3/4)*((6-n)/6)", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain"}, {"marks": 1, "showPrecisionHint": false, "maxValue": "(1/4)*(n/6)+(3/4)*((6-n)/6)+(1/4)*((6-n)/6)", "scripts": {}, "type": "numberentry", "strictPrecision": false, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "prompt": "

What is the probability that at least one of these two events will occur?

", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "precisionType": "dp", "variableReplacements": [], "allowFractions": true, "minValue": "(1/4)*(n/6)+(3/4)*((6-n)/6)+(1/4)*((6-n)/6)", "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain"}], "tags": [], "variable_groups": [], "rulesets": {}, "extensions": [], "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}