// Numbas version: finer_feedback_settings {"name": "Blathnaid's copy of Finding limits by substitution, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "parts": [{"showCorrectAnswer": true, "type": "gapfill", "gaps": [{"allowFractions": false, "correctAnswerFraction": false, "maxValue": "ans1", "minValue": "ans1", "showCorrectAnswer": true, "type": "numberentry", "scripts": {}, "marks": 1, "showPrecisionHint": false}, {"allowFractions": false, "correctAnswerFraction": false, "maxValue": "ans2", "minValue": "ans2", "showCorrectAnswer": true, "type": "numberentry", "scripts": {}, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "checkingaccuracy": 0.001, "scripts": {}, "expectedvariablenames": [], "answer": "{b2*a2+c2}/{b3*a2+c3}", "marks": 1, "vsetrangepoints": 5, "showpreview": true, "type": "jme", "answersimplification": "std", "notallowed": {"partialCredit": 0, "showStrings": false, "message": "
Enter all numbers as either integers or fractions but not as decimals.
", "strings": ["."]}, "vsetrange": [0, 1], "checkvariablenames": false, "checkingtype": "absdiff"}], "prompt": "1. Find \\[\\lim_{x \\to \\var{a}}(\\simplify[std]{{b}x+{c}})\\]
\nLimit = [[0]].
\n2.Find \\[\\lim_{x \\to \\var{a1}}(\\simplify[std]{{b1}x^2+{c1}x+{d1}})\\]
\nLimit = [[1]].
\n3. Find \\[\\lim_{x \\to \\var{a2}}\\left(\\simplify[std]{({b2}x+{c2})/({b3}x+{c3})}\\right)\\]
\nLimit = [[2]]
\nEnter all numbers as either integers or fractions but not as decimals.
", "scripts": {}, "marks": 0}], "functions": {}, "showQuestionGroupNames": false, "statement": "Find the following limits.
", "rulesets": {"std": ["all", "!noleadingMinus", "fractionNumbers", "!collectNumbers"]}, "name": "Blathnaid's copy of Finding limits by substitution, ", "advice": "1. To find this limit we simply substitute $x=\\var{a}$ into $\\simplify[std]{{b}x+{c}}$ to get \\[\\lim_{x \\to \\var{a}}(\\simplify[std]{{b}x+{c}})=\\simplify[]{{b}*{a}+{c}={ans1}}\\]
\n2. Similarly to find this limit we simply substitute $x=\\var{a1}$ into $\\simplify[std]{{b1}x^2+{c1}x+{d1}}$ to get \\[\\lim_{x \\to \\var{a1}}(\\simplify[std]{{b1}x^2+{c1}x+{d1}}) =\\simplify[]{{b1}*{a1}^2+{c1}*{a1}+{d1}={ans2}}\\]
\n3. Once again we could simply substitute $x=\\var{a2}$ into $\\displaystyle \\simplify[std]{({b2}x+{c2})/({b3}x+{c3})}$. However before doing this we must make sure that the denominator is not $0$ as otherwise we have a problem and the limit may not exist.
\nBut $\\simplify[]{{b3}*{a2}+{c3}={b3*a2+c3} }\\neq 0$ and so we can make the substitution safely.
\nSo \\[\\lim_{x \\to \\var{a2}}\\left(\\simplify[std]{({b2}x+{c2})/({b3}x+{c3})}\\right)=\\simplify[]{({b2}*{a2}+{c2})/({b3}*{a2}+{c3})}=\\simplify[all,fractionNumbers]{{b2*a2+c2}/{b3*a2+c3}}\\]
", "preamble": {"css": "", "js": ""}, "type": "question", "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "ans1", "ans2", "a1", "a2", "b1", "b2", "b3", "c3", "c2", "c1", "d1"], "variables": {"d1": {"definition": "random(-9..9 except 0)", "description": "", "name": "d1", "templateType": "anything", "group": "Ungrouped variables"}, "ans1": {"definition": "b*a+c", "description": "", "name": "ans1", "templateType": "anything", "group": "Ungrouped variables"}, "c3": {"definition": "random(-9..9 except [0,-b3*a2,round(c2*b3/b2)])", "description": "", "name": "c3", "templateType": "anything", "group": "Ungrouped variables"}, "b": {"definition": "random(-9..9 except 0)", "description": "", "name": "b", "templateType": "anything", "group": "Ungrouped variables"}, "c1": {"definition": "random(-9..9 except 0)", "description": "", "name": "c1", "templateType": "anything", "group": "Ungrouped variables"}, "b3": {"definition": "random(-9..9 except 0)", "description": "", "name": "b3", "templateType": "anything", "group": "Ungrouped variables"}, "a": {"definition": "random(-9..9 except 0)", "description": "", "name": "a", "templateType": "anything", "group": "Ungrouped variables"}, "b2": {"definition": "random(-9..9 except 0)", "description": "", "name": "b2", "templateType": "anything", "group": "Ungrouped variables"}, "b1": {"definition": "random(-9..9 except 0)", "description": "", "name": "b1", "templateType": "anything", "group": "Ungrouped variables"}, "a2": {"definition": "random(-9..9 except 0)", "description": "", "name": "a2", "templateType": "anything", "group": "Ungrouped variables"}, "c2": {"definition": "random(-9..9 except 0)", "description": "", "name": "c2", "templateType": "anything", "group": "Ungrouped variables"}, "c": {"definition": "random(-9..9 except 0)", "description": "", "name": "c", "templateType": "anything", "group": "Ungrouped variables"}, "a1": {"definition": "random(-9..9 except 0)", "description": "", "name": "a1", "templateType": "anything", "group": "Ungrouped variables"}, "ans2": {"definition": "b1*a1^2+c1*a1+d1", "description": "", "name": "ans2", "templateType": "anything", "group": "Ungrouped variables"}}, "tags": ["checked2015", "limits", "MAS1601", "mas1601", "MAS1603"], "question_groups": [{"pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered", "questions": []}], "metadata": {"notes": "", "description": "Using simple substitution to find $\\lim_{x \\to a} bx+c$, $\\lim_{x \\to a} bx^2+cx+d$ and $\\displaystyle \\lim_{x \\to a} \\frac{bx+c}{dx+f}$ where $d\\times a+f \\neq 0$.
", "licence": "Creative Commons Attribution 4.0 International"}, "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}]}]}], "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}]}