// Numbas version: finer_feedback_settings {"name": "Christian's copy of Mystery derivatives", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["defs"], "variables": {"d": {"definition": "random(3..5)", "name": "d", "templateType": "anything", "description": "", "group": "Function definition"}, "f": {"definition": "random(0,1)", "name": "f", "templateType": "anything", "description": "", "group": "Function definition"}, "g": {"definition": "random(2..3)", "name": "g", "templateType": "anything", "description": "", "group": "Function definition"}, "lines": {"definition": "shuffle([0,1,3])", "name": "lines", "templateType": "anything", "description": "", "group": "Answer definition"}, "c": {"definition": "random(-10..10 except 0)/10", "name": "c", "templateType": "anything", "description": "", "group": "Function definition"}, "defs": {"definition": "[\n ['b',b],\n ['c',c],\n ['d',d],\n ['e',g],\n ['f',f],\n ['cols','{'+linesText+'}'],\n ['sel',selector]\n]", "name": "defs", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "linesText": {"definition": "join(lines,',')", "name": "linesText", "templateType": "anything", "description": "", "group": "Answer definition"}, "markMatrix": {"definition": "matrix(map(map(if(lines[a]=b,2,-1),a,0..2),b,[0,1,3]))", "name": "markMatrix", "templateType": "anything", "description": "", "group": "Answer definition"}, "selector": {"definition": "random(0,1)", "name": "selector", "templateType": "anything", "description": "", "group": "Function definition"}, "b": {"definition": "random(-10..10)/10", "name": "b", "templateType": "anything", "description": "", "group": "Function definition"}}, "parts": [{"maxAnswers": 0, "shuffleChoices": false, "answers": ["
$f$
", "$f'$
", "$f''$
"], "showCorrectAnswer": true, "shuffleAnswers": false, "choices": ["Solid line
", "Dashed line
", "Dotted line
"], "minMarks": 0, "scripts": {}, "displayType": "radiogroup", "prompt": "For each curve, select the corresponding derivative. You will score $2$ points for each curve correctly identified, and $-1$ point for each curve incorrectly identified.
", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "warningType": "none", "variableReplacements": [], "minAnswers": 0, "type": "m_n_x", "matrix": "markMatrix", "marks": 0, "layout": {"expression": "", "type": "all"}, "showFeedbackIcon": true}], "advice": "Here are some questions to consider for this problem.
\nGiven a set of curves on axes, generated from a function and its first two derivatives, identify which curve corresponds to which derivative.
"}, "variable_groups": [{"name": "Function definition", "variables": ["b", "c", "d", "g", "f", "selector"]}, {"name": "Answer definition", "variables": ["lines", "linesText", "markMatrix"]}], "preamble": {"css": "", "js": ""}, "extensions": ["geogebra"], "statement": "\nThe following graph (which may take a little while to load) shows three curves: a solid line, a dashed line and a dotted line. These curves represent a function and its derivatives; if we call the function $f$, then one curve represents $f$ and the other two curves represent $f'$ and $f''$.
\n{geogebra_applet('y4aFfH8q',defs)}
", "tags": [], "name": "Christian's copy of Mystery derivatives", "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}