// Numbas version: exam_results_page_options {"name": "Complete the square. (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Complete the square. (Video)", "tags": ["Steps", "algebra", "algebraic manipulation", "complete the square", "completing the square", "quadratics", "roots of a polynomial", "roots of a quadratic", "solving equations", "solving quadratic equation", "steps", "video"], "advice": "\n \n \n

Completing the square for the quadratic expression $\\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\\[\\begin{eqnarray}\n \n \\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\\var{n5}\\left(\\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\\right)\\\\\n \n &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2+ \\simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\\right)\\\\\n \n &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2 -\\simplify{ {n2^2}/{4*(a*b)^2}}\\right)\\\\\n \n &=&\\var{n5}\\left(\\simplify{x+({-n1}/{2*n5})}\\right)^2 -\\simplify{ {n2^2}/{4*(n5)}}\n \n \\end{eqnarray}\n \n \\]
So to solve $\\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\\[\\begin{eqnarray}\n \n \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}& -\\simplify{ {n2^2}/{4*(a*b)^2}}=0\\Rightarrow\\\\\n \n \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}&=\\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2}\n \n \\end{eqnarray}\\]
So we get the two {rep} solutions:
\\[\\begin{eqnarray}\n \n \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{{abs(n2)}/{2*a*b}} \\Rightarrow &x& = \\simplify{({abs(n2)+n1}/{2*a*b})}\\\\\n \n \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{-({abs(n2)}/{2*a*b})} \\Rightarrow &x& = \\simplify{({n1-abs(n2)}/{2*a*b})}\n \n \\end{eqnarray}\\]

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "

\\[q(x)=\\simplify[std]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}\\]
Write $q(x) = a(x+b)^2+c\\;\\;$ for fractions or integers $a$, $b$, $c$.

\n

$q(x)=\\;$ [[0]]

\n

You can get more information on completing the square by clicking on Show steps. You will lose 1 mark if you do so.

\n

You will also find a video covering the use of completing the square in solving a quadratic equation.

\n

Input all numbers as fractions or integers and not as decimals.

", "gaps": [{"notallowed": {"message": "

Write in the form $a(x+b)^2+c$ without using decimals.

", "showstrings": false, "strings": [".", "x*x", "x x", "x(", "x (", ")x", ") x"], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "{n5}(x+({-n1}/{2*n5}))^2-{n2^2}/{4*n5}", "type": "jme", "musthave": {"message": "

write in the form $a(x+b)^2+c$

", "showstrings": false, "strings": ["(", ")", "^"], "partialcredit": 0.0}}], "steps": [{"prompt": "

Given the quadratic $\\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}$ we complete the square by:

\n

1. Writing the quadratic as \\[\\var{n5}\\left(\\simplify{x^2+({-n1}/{n5})x+ {c*d}/{n5}}\\right)\\]

\n

2. Then complete the square for the quadratic \\[\\simplify{x^2+({-n1}/{n5})x+ {c*d}/{n5}}\\]

\n

3. Remember to multiply by $\\var{n5}$ the expression found from the second stage.

\n

The following video steps through a similar problem.

\n

\n

 

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n

Now find the roots of the quadratic equation $\\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$.

\n

The least root is $x=\\;$ [[0]]. The greatest root is $x=\\;$ [[1]].

\n

Input the roots as fractions or integers not as decimals.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{n1-n4}/{2*a*b}", "type": "jme"}, {"notallowed": {"message": "

Input numbers as fractions or integers not as  decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{n1+n4}/{2*a*b}", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "extensions": [], "statement": "

Complete the square for the quadratic expression $q(x)$ given below by writing it in the form \\[a(x+b)^2+c\\] for numbers $a,\\;b$ and $c$.

\n

Hence, or otherwise, find both roots of the equation $q(x)=0$.

\n

 

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..5)", "name": "a"}, "c": {"definition": "c1*s3", "name": "c"}, "b": {"definition": "random(1..4)", "name": "b"}, "d": {"definition": "if(d1=b*c/a, max(d1+1,random(1..5))*s3,d1*s3)", "name": "d"}, "f": {"definition": "a*b", "name": "f"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "n5": {"definition": "a*b", "name": "n5"}, "disc": {"definition": "(b*c+a*d)^2-4*a*b*c*d", "name": "disc"}, "c1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "name": "c1"}, "rep": {"definition": "switch(disc=0,'repeated', ' ')", "name": "rep"}, "n1": {"definition": "b*c+a*d", "name": "n1"}, "n2": {"definition": "b*c-a*d", "name": "n2"}, "n3": {"definition": "2*a*b", "name": "n3"}, "n4": {"definition": "abs(n2)", "name": "n4"}, "rdis": {"definition": "switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')", "name": "rdis"}, "d1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "name": "d1"}}, "metadata": {"notes": "\n \t\t

5/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Corrected variable value n2 to ensure that there are no repeated roots.

\n \t\t

Checked calculation.OK.

\n \t\t

Improved display in content areas.

\n \t\t", "description": "

Find $p$ and $q$ such that $ax^2+bx+c = a(x+p)^2+q$. 

\n

Hence, or otherwise, find roots of  $ax^2+bx+c=0$.

\n

Includes a video which shows how to solve a quadratic by completing the square.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}