// Numbas version: finer_feedback_settings {"name": "cormac's copy of Blathnaid's copy of Implicit differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "preamble": {"js": "", "css": ""}, "showQuestionGroupNames": false, "name": "cormac's copy of Blathnaid's copy of Implicit differentiation", "parts": [{"marks": 0, "scripts": {}, "gaps": [{"scripts": {}, "vsetrangepoints": 5, "answer": "(({( - a)} + ( - (2 * x))) / ({b} + (2 * y)))", "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "vsetrange": [0, 1], "showpreview": true, "marks": 2, "answersimplification": "all,!collectNumbers", "type": "jme", "expectedvariablenames": [], "checkingtype": "absdiff"}], "prompt": "\n

Using implicit differentiation find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.

\n

Input your answer here:

\n

$\\displaystyle \\frac{dy}{dx}= $ [[0]]

\n ", "showCorrectAnswer": true, "type": "gapfill"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Given the following relation between $x$ and $y$
\\[\\simplify[all,!collectNumbers]{x^2+y^2+{a}x+{b}y}=\\var{c}\\]
answer the following question.

", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t

20/06/2012:

\n \t\t

Added tags.

\n \t\t

Improved display using \\displaystyle where appropriate.

\n \t\t

Changed marks to 2.

\n \t\t

 

\n \t\t

3/07/2012:

\n \t\t

Added tags.

\n \t\t", "description": "\n \t\t

Implicit differentiation.

\n \t\t

Given $x^2+y^2+ax+by=c$ find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.

\n \t\t

 

\n \t\t"}, "question_groups": [{"name": "", "questions": [], "pickQuestions": 0, "pickingStrategy": "all-ordered"}], "rulesets": {}, "ungrouped_variables": ["a", "c", "b"], "tags": ["calculus", "Calculus", "checked2015", "derivative", "derivative ", "deriving an implicit relation", "differentiate", "differentiate implicitly", "differentiation", "first derivative using implicit differentiation", "implicit differentiation", "implicit relation", "mas1601", "MAS1601"], "type": "question", "variables": {"c": {"name": "c", "templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(1..9)"}, "a": {"name": "a", "templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "-random(1..9)"}, "b": {"name": "b", "templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(1..9)"}}, "functions": {}, "advice": "

On differentiating both sides of the equation implicitly we get
\\[2x + \\simplify[all,!collectNumbers]{2y*Diff(y,x,1) + {a} + {b} *Diff(y,x,1)} = 0\\]
Collecting terms in $\\displaystyle\\frac{dy}{dx}$ and rearranging the equation we get
\\[(\\var{b} + 2y) \\frac{dy}{dx} = \\simplify[all,!collectNumbers]{{ -a} -2x}\\] and hence on further rearranging:
\\[\\frac{dy}{dx} = \\simplify[all,!collectNumbers]{({ - a} - 2 * x) / ({b} + (2 * y))}\\]

", "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}]}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}]}