// Numbas version: finer_feedback_settings {"name": "cormac's copy of cormac's copy of Blathnaid's copy of Vicky's copy of Differentiation 17 - Applications", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "ungrouped_variables": ["cts", "ct"], "variables": {"ct": {"description": "
coeff of t
", "name": "ct", "definition": "siground(random(30..90),1)", "templateType": "anything", "group": "Ungrouped variables"}, "cts": {"description": "coeff of t^2
", "name": "cts", "definition": "random(3..9)", "templateType": "anything", "group": "Ungrouped variables"}}, "metadata": {"description": "Real life problems with differentiation
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "An unpowered missile is launched vertically from the ground.
\nAt a time $t$ seconds after the instant of projection, its height, $y$ metres, above the ground is given by the formula
\n\\[ y=\\var{ct}t-\\var{cts}t^2. \\]
\nCalculate the maximum height reached by the missile.
", "showQuestionGroupNames": false, "type": "question", "question_groups": [{"pickQuestions": 0, "questions": [], "pickingStrategy": "all-ordered", "name": ""}], "tags": [], "extensions": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "parts": [{"stepsPenalty": "2", "prompt": "$y=\\var{ct}t-\\var{cts}t^2$
\nFirstly, differentiate.
\n$\\frac{dy}{dt}=$ [[0]]
\nNow use this result and your knowledge of differentiation to find the maximum height of the missile, rounding to the nearest whole number.
\n$y=$ [[1]]
\n", "gaps": [{"answersimplification": "all", "vsetrange": [0, 1], "scripts": {}, "checkingtype": "absdiff", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "jme", "showpreview": true, "vsetrangepoints": 5, "answer": "{ct}-2{cts}t", "checkvariablenames": false, "marks": "1", "showCorrectAnswer": true, "expectedvariablenames": [], "checkingaccuracy": 0.001}, {"precisionType": "dp", "scripts": {}, "showCorrectAnswer": true, "showPrecisionHint": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "numberentry", "minValue": "{ct}({ct}/(2{cts}))-{cts}({ct}/(2{cts}))^2", "precision": "0", "allowFractions": true, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{ct}({ct}/(2{cts}))-{cts}({ct}/(2{cts}))^2", "marks": "3", "precisionPartialCredit": "50", "correctAnswerFraction": false, "strictPrecision": false}], "scripts": {}, "type": "gapfill", "variableReplacementStrategy": "originalfirst", "marks": 0, "showCorrectAnswer": true, "steps": [{"prompt": "The missile will follow a parabolic curve when height is plotted against time.
\nIt takes the same amount of time to reach its maximum as it does to fall back down.
", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "variableReplacements": [], "type": "information", "showCorrectAnswer": true}, {"answersimplification": "all", "vsetrange": [0, 1], "scripts": {}, "prompt": "The maximum height will be at the stationary point.
\nThe stationary point can be found by equating $\\frac{dy}{dt}$ to $0$.
\n$\\frac{dy}{dt}=0=$
", "checkingtype": "absdiff", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "jme", "showCorrectAnswer": true, "vsetrangepoints": 5, "answer": "{ct}-2{cts}t", "checkvariablenames": false, "marks": "0", "showpreview": true, "expectedvariablenames": [], "checkingaccuracy": 0.001}, {"type": "numberentry", "prompt": "Therefore, $t=$
", "scripts": {}, "allowFractions": true, "showCorrectAnswer": true, "maxValue": "{ct}/(2{cts})", "variableReplacementStrategy": "originalfirst", "marks": "0", "variableReplacements": [], "correctAnswerFraction": true, "minValue": "{ct}/(2{cts})"}], "variableReplacements": []}], "preamble": {"js": "", "css": ""}, "functions": {}, "name": "cormac's copy of cormac's copy of Blathnaid's copy of Vicky's copy of Differentiation 17 - Applications", "variable_groups": [], "advice": "This section draws on the skills learnt the previous parts of the 'Differentiation' series of questions, and some logical thinking about the physics of the problem.
\nThe steps within the part walk through the process.
", "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}]}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}]}