// Numbas version: finer_feedback_settings {"name": "cormac's copy of cormac's copy of Chain rule 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Chain rule
"}, "variables": {"a4": {"name": "a4", "description": "", "definition": "random(3..12#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "a1": {"name": "a1", "description": "", "definition": "random(2..7#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "a3": {"name": "a3", "description": "", "definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "a2": {"name": "a2", "description": "", "definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables"}}, "preamble": {"js": "", "css": ""}, "rulesets": {}, "variable_groups": [], "parts": [{"type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "gaps": [{"type": "jme", "marks": "5", "expectedvariablenames": [], "variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "showCorrectAnswer": true, "answer": "{a1}*{a2}*{a3}x^({a3}-1)cos({a2}x^{a3}+{a4})", "checkingaccuracy": 0.001, "showFeedbackIcon": true, "showpreview": true}], "showFeedbackIcon": true, "prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "variableReplacements": []}], "tags": [], "statement": "Differentiate the function:
\n\\(f(x)=\\var{a1}sin(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
", "name": "cormac's copy of cormac's copy of Chain rule 1", "ungrouped_variables": ["a1", "a2", "a3", "a4"], "advice": "\\(f(x)=\\var{a1}sin(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=\\var{a1}sin(u)\\)
\n\\(\\frac{df}{du}=\\var{a1}cos(u)\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\var{a1}cos(u).\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}cos(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
", "functions": {}, "type": "question", "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}]}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}]}