// Numbas version: finer_feedback_settings {"name": "Julie's copy of Clodagh's copy of Poisson Distribution (printing errors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"question_groups": [{"questions": [], "pickingStrategy": "all-ordered", "name": "", "pickQuestions": 0}], "tags": ["rebelmaths"], "extensions": [], "advice": "

Part (a)

\n

Remember that for a Poisson random variable:
\\begin{align}
\\operatorname{P}(X=x)&=\\dfrac{\\lambda^x\\times e^{-\\lambda}}{x!}\\\\
\\end{align}

\n

1.\\[ \\begin{eqnarray*}\\operatorname{P}(X = \\var{x}) &=& \\frac{\\var{l} ^ {\\var{x}}e ^ { -\\var{l}}} {\\var{x}!}\\\\& =& \\var{answer1} \\end{eqnarray*} \\] to 3 decimal places.

\n

 

\n

Part (b)

\n

2. For a $\\var{n}$ page document, $\\lambda=\\var{n} \\times \\var{l} = \\var{l2}$

\n

The probability of having less than $\\var{y}$ errors is given by:

\n

$P(X < \\var{y}) = P(X=0) + P(X=1) +P(X=2)$

\n

where 

\n

$P(X=0) =\\frac{\\var{l2}^{0}e^{-\\var{l2}}}{0!}=\\var{pr0}$

\n

$P(X=1) =\\frac{\\var{l2}^{1}e^{-\\var{l2}}}{1!}=\\var{pr1}$

\n

$P(X=1) =\\frac{\\var{l2}^{2}e^{-\\var{l2}}}{2!}=\\var{pr2}$

\n

Hence 

\n

$P(X < \\var{y})$ = $\\var{pr0}+\\var{pr1}+\\var{pr2}=\\var{answer2}$

", "variables": {"pr1": {"group": "Ungrouped variables", "templateType": "anything", "name": "pr1", "definition": "((e^-l2)*(l2^1))/1!", "description": ""}, "answer2": {"group": "Ungrouped variables", "templateType": "anything", "name": "answer2", "definition": "if(y=3, ((e^-l2)*(l2^0))/0!+((e^-l2)*(l2^(1)))/(1)!+((e^-l2)*(l2^2))/2!,((e^-l2)*(l2^0))/0!+((e^-l2)*(l2^(1)))/(1)!)", "description": ""}, "l2": {"group": "Ungrouped variables", "templateType": "anything", "name": "l2", "definition": "l*n", "description": ""}, "answer1": {"group": "Ungrouped variables", "templateType": "anything", "name": "answer1", "definition": "((e^-l)*(l^x))/x!", "description": ""}, "x": {"group": "Ungrouped variables", "templateType": "anything", "name": "x", "definition": "random(0..2)", "description": "

number of customers entering the shop

"}, "pr2": {"group": "Ungrouped variables", "templateType": "anything", "name": "pr2", "definition": "((e^-l2)*(l2^2))/2!", "description": ""}, "y": {"group": "Ungrouped variables", "templateType": "anything", "name": "y", "definition": "3", "description": "

upper value of X

"}, "l": {"group": "Ungrouped variables", "templateType": "anything", "name": "l", "definition": "random(0.05..0.4#0.1)", "description": "

average, lambda

"}, "pr0": {"group": "Ungrouped variables", "templateType": "anything", "name": "pr0", "definition": "((e^-l2)*(l2^0))/0!", "description": ""}, "n": {"group": "Ungrouped variables", "templateType": "anything", "name": "n", "definition": "random(6..15#1)", "description": "

time interval

"}}, "ungrouped_variables": ["l", "x", "n", "y", "answer1", "answer2", "l2", "pr0", "pr1", "pr2"], "showQuestionGroupNames": false, "statement": "

Please give your answer to at least 3 decimal places.

\n

Printing errors in the work produced by a particular film occur randomly at an average rate of $\\var{l}$ per page.

", "rulesets": {}, "functions": {}, "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "Julie's copy of Clodagh's copy of Poisson Distribution (printing errors)", "preamble": {"js": "", "css": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

rebelmaths

\n

Printing errors in the work produced by a particular film occur randomly at an average rate of p per page.

\n


i.What is the probability that a one page document will contain x1 printing error(s)?

ii.If a n page document is printed, calculate the probability of having more than x2 errors. Assume a Poisson distribution.

"}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "showPrecisionHint": false, "prompt": "

What is the probability that a one page document will contain exactly $\\var{x}$ printing error(s)?

", "correctAnswerFraction": false, "marks": "3", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "numberentry", "minValue": "answer1-0.001", "maxValue": "answer1+0.001", "allowFractions": false}, {"scripts": {}, "showCorrectAnswer": true, "showPrecisionHint": false, "prompt": "

If a $\\var{n}$ page document is printed, calculate the probability of having less than $\\var{y}$ errors. 

", "correctAnswerFraction": false, "marks": "5", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "numberentry", "minValue": "answer2 -0.001", "maxValue": "answer2 +0.001", "allowFractions": false}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}