// Numbas version: finer_feedback_settings {"name": "fabrizio's copy of Probabilities from a normal distribution - Electrician", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["units1", "upper", "lower", "p1", "m", "s", "zupper", "p", "amount", "p2", "tol", "zlower", "stuff", "prob2", "prob3", "prob1"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Given a random variable $X$ normally distributed as $\\operatorname{N}(m,\\sigma^2)$ find probabilities $P(X \\gt a),\\; a \\gt m;\\;\\;P(X \\lt b),\\;b \\lt m$.
\nrebelmaths
"}, "preamble": {"js": "", "css": ""}, "rulesets": {}, "extensions": ["stats"], "variable_groups": [], "name": "fabrizio's copy of Probabilities from a normal distribution - Electrician", "variables": {"p1": {"templateType": "anything", "name": "p1", "group": "Ungrouped variables", "definition": "precround(normalcdf(zupper,0,1),4)", "description": ""}, "tol": {"templateType": "anything", "name": "tol", "group": "Ungrouped variables", "definition": "0.01", "description": ""}, "prob3": {"templateType": "anything", "name": "prob3", "group": "Ungrouped variables", "definition": "precround(p1-p2,2)", "description": ""}, "zlower": {"templateType": "anything", "name": "zlower", "group": "Ungrouped variables", "definition": "precround((m-lower)/s,2)", "description": ""}, "s": {"templateType": "anything", "name": "s", "group": "Ungrouped variables", "definition": "random(5000..15000#1000)", "description": ""}, "lower": {"templateType": "anything", "name": "lower", "group": "Ungrouped variables", "definition": "random(m-1.5*s..m-0.5s#10000)", "description": ""}, "amount": {"templateType": "anything", "name": "amount", "group": "Ungrouped variables", "definition": "\"electricity consumption\"", "description": ""}, "p": {"templateType": "anything", "name": "p", "group": "Ungrouped variables", "definition": "precround(normalcdf(zlower,0,1),4)", "description": ""}, "prob1": {"templateType": "anything", "name": "prob1", "group": "Ungrouped variables", "definition": "precround(1-p,2)", "description": ""}, "p2": {"templateType": "anything", "name": "p2", "group": "Ungrouped variables", "definition": "1-p", "description": ""}, "prob2": {"templateType": "anything", "name": "prob2", "group": "Ungrouped variables", "definition": "precround(1-p1,2)", "description": ""}, "units1": {"templateType": "anything", "name": "units1", "group": "Ungrouped variables", "definition": "\"k Wh\"", "description": ""}, "zupper": {"templateType": "anything", "name": "zupper", "group": "Ungrouped variables", "definition": "precround((upper-m)/s,2)", "description": ""}, "m": {"templateType": "anything", "name": "m", "group": "Ungrouped variables", "definition": "random(30000..50000#2000)", "description": ""}, "stuff": {"templateType": "anything", "name": "stuff", "group": "Ungrouped variables", "definition": "\"a frozen foods warehouse each week in the summer months \"", "description": ""}, "upper": {"templateType": "anything", "name": "upper", "group": "Ungrouped variables", "definition": "random(m+0.5s..m+1.5*s#10000)", "description": ""}}, "tags": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "parts": [{"scripts": {}, "variableReplacements": [], "showCorrectAnswer": true, "marks": 0, "prompt": "If one electrician is chosen at random, what is probability that this electrician earns over €{upper}?
\nProbability = [[0]](to 2 decimal places)
\n", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"mustBeReduced": false, "minValue": "prob2-tol", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "scripts": {}, "variableReplacements": [], "maxValue": "prob2+tol", "showCorrectAnswer": true, "type": "numberentry", "correctAnswerStyle": "plain", "marks": "4", "allowFractions": false, "showFeedbackIcon": true}], "showFeedbackIcon": true}, {"scripts": {}, "variableReplacements": [], "showCorrectAnswer": true, "marks": 0, "prompt": "If one electrician is chosen at random, what is probability that this electrician earns less than €{lower} ?
\nProbability = [[0]](to 2 decimal places)
", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"mustBeReduced": false, "minValue": "prob1-tol", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "scripts": {}, "variableReplacements": [], "maxValue": "prob1+tol", "showCorrectAnswer": true, "type": "numberentry", "correctAnswerStyle": "plain", "marks": "4", "allowFractions": false, "showFeedbackIcon": true}], "showFeedbackIcon": true}, {"scripts": {}, "variableReplacements": [], "showCorrectAnswer": true, "marks": 0, "prompt": "If one electrician is chosen at random, what is probability that this electrician earns between €{lower} and €{upper}?
\nProbability = [[0]](to 2 decimal places)
", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"mustBeReduced": false, "minValue": "prob3-tol", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "scripts": {}, "variableReplacements": [], "maxValue": "prob3+tol", "showCorrectAnswer": true, "type": "numberentry", "correctAnswerStyle": "plain", "marks": "4", "allowFractions": false, "showFeedbackIcon": true}], "showFeedbackIcon": true}], "statement": "The salary of an irish electrician is normally distributed with mean €{m} and standard deviation €{s}. $a+b=\\int_0^3 f(x)dx$
\n", "advice": "
1. Converting to $\\operatorname{N}(0,1)$
\n$\\simplify[all,!collectNumbers]{P(X > {upper}) = P(Z > ({upper} -{m}) / {s})} = P(Z>\\var{zupper}) = 1-P(Z<\\var{zupper})=1-\\var{p1} = \\var{prob2}$ to 2 decimal places.
\n2.
\n$\\simplify[all,!collectNumbers]{P({lower} < X < {upper}) = P(X < {upper})-P(X < {lower})}=P(Z<\\var{zupper})-P(Z<-\\var{zlower}) =\\var{p1}-\\var{p2} = \\var{prob3}$ to 2 decimal places.
", "functions": {}, "type": "question", "contributors": [{"name": "fabrizio iozzi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1462/"}]}]}], "contributors": [{"name": "fabrizio iozzi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1462/"}]}