// Numbas version: finer_feedback_settings {"name": "Sid's copy of Oracle function estimation", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "variable_groups": [], "parts": [{"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionPartialCredit": 0, "precision": "1", "strictPrecision": true, "maxValue": "df+0.5", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "marks": 1, "type": "numberentry", "allowFractions": false, "scripts": {}, "variableReplacementStrategy": "originalfirst", "precisionMessage": "You have not given your answer to the correct precision.", "precisionType": "dp", "correctAnswerStyle": "plain", "minValue": "df-0.5", "correctAnswerFraction": false, "variableReplacements": []}, {"precisionPartialCredit": 0, "precision": "1", "strictPrecision": true, "maxValue": "ddf+0.5", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "marks": 1, "type": "numberentry", "allowFractions": false, "scripts": {}, "variableReplacementStrategy": "originalfirst", "precisionMessage": "You have not given your answer to the correct precision.", "precisionType": "dp", "correctAnswerStyle": "plain", "minValue": "ddf-0.5", "correctAnswerFraction": false, "variableReplacements": []}], "showCorrectAnswer": true, "marks": 0, "prompt": "
Estimate $f'\\!(\\var{x_0})$ to one decimal place: [[0]]
\nEstimate $f''\\!(\\var{x_0})$ to one decimal place: [[1]]
\n", "variableReplacements": []}, {"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "gaps": [{"integerAnswer": true, "maxValue": "a", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "type": "numberentry", "integerPartialCredit": 0, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "scripts": {}, "correctAnswerStyle": "plain", "minValue": "a", "correctAnswerFraction": false, "variableReplacements": []}, {"integerAnswer": true, "maxValue": "b", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "type": "numberentry", "integerPartialCredit": 0, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "scripts": {}, "correctAnswerStyle": "plain", "minValue": "b", "correctAnswerFraction": false, "variableReplacements": []}, {"integerAnswer": true, "maxValue": "c", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "type": "numberentry", "integerPartialCredit": 0, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "scripts": {}, "correctAnswerStyle": "plain", "minValue": "c", "correctAnswerFraction": false, "variableReplacements": []}, {"integerAnswer": true, "maxValue": "d", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "type": "numberentry", "integerPartialCredit": 0, "allowFractions": false, "variableReplacementStrategy": "originalfirst", "scripts": {}, "correctAnswerStyle": "plain", "minValue": "d", "correctAnswerFraction": false, "variableReplacements": []}], "showCorrectAnswer": true, "marks": 0, "prompt": "Suppose I reveal that the function is a cubic, so that $f(x) = a x^3 + b x^2 + c x + d$. I will also tell you that $\\{a,b,c,d\\} \\subset \\mathbb{Z}$. Calculate the parameters $a$ to $d$.
\n$a = $ [[0]]
\n$b = $ [[1]]
\n$c = $ [[2]]
\n$d = $ [[3]]
", "variableReplacements": []}], "tags": [], "preamble": {"css": "", "js": ""}, "ungrouped_variables": ["a", "b", "defs", "c", "d", "x_0", "df", "ddf"], "functions": {}, "variables": {"df": {"group": "Ungrouped variables", "name": "df", "definition": "3*a*x_0^2+2*b*x_0+c", "templateType": "anything", "description": ""}, "d": {"group": "Ungrouped variables", "name": "d", "definition": "random(-3..3)", "templateType": "anything", "description": ""}, "a": {"group": "Ungrouped variables", "name": "a", "definition": "random(-3..3 except 0)", "templateType": "anything", "description": ""}, "defs": {"group": "Ungrouped variables", "name": "defs", "definition": "[\n ['a',a],\n ['b',b],\n ['c',c],\n ['d',d]\n]", "templateType": "anything", "description": ""}, "b": {"group": "Ungrouped variables", "name": "b", "definition": "random(-3..3)", "templateType": "anything", "description": ""}, "c": {"group": "Ungrouped variables", "name": "c", "definition": "random(-3..3#1)", "templateType": "randrange", "description": ""}, "ddf": {"group": "Ungrouped variables", "name": "ddf", "definition": "6*a*x_0+2*b", "templateType": "anything", "description": ""}, "x_0": {"group": "Ungrouped variables", "name": "x_0", "definition": "random(-50 .. 50 except 0)/10", "templateType": "anything", "description": ""}}, "extensions": ["geogebra"], "name": "Sid's copy of Oracle function estimation", "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "", "statement": "I am thinking of a function, but I will not tell you what it is! But:
\n{geogebra_applet('ufgKrAzb',defs)}
", "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "Given an oracle function that will output its value given an input: first estimate the derivative, and second calculate its shape.
"}, "type": "question", "contributors": [{"name": "Sid Fox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1467/"}]}]}], "contributors": [{"name": "Sid Fox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1467/"}]}