// Numbas version: exam_results_page_options {"name": "Simplify logarithms 1: (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Simplify logarithms 1: (Video)", "tags": ["log laws", "logarithm laws", "logarithmic expressions", "logarithms", "logs", "rules for logarithms", "simplifying logarithms", "video"], "advice": "\n \n \n

The rules for combining logs are

\n \n \n \n

\\[\\begin{eqnarray*}\n \n \\log_a(bc)&=&\\log_a(b)+\\log_a(c)\\\\\n \n \\\\\n \n \\log_a\\left(\\frac{b}{c}\\right)&=&\\log_a(b)-\\log_a(c)\\\\\n \n \\\\\n \n \\log_a(b^r)&=&r\\log_a(b)\n \n \\end{eqnarray*}\n \n \\]

\n \n \n \n

a)
Using these rules gives:
\\[ \\begin{eqnarray*}\n \n \\log_a(x^{\\var{a1}}y^{\\var{b1}})&=&\\log_a(x^{\\var{a1}})+\\log_a(y^{\\var{b1}})\\\\\n \n &=&\\var{a1}\\log_a(x)+\\var{b1}\\log_a(y)\n \n \\end{eqnarray*}\n \n \\]

\n \n \n \n

b)
\\[\\begin{eqnarray*}\n \n \\simplify[std]{{a2}/{b2}}\\log_a(x)+\\log_a(\\simplify{{c}*x+{d}})-\\log_a(\\simplify{x^(1/{b2})})&=&\\log_a(x^\\frac{\\var{a2}}{\\var{b2}})+\\log_a(\\simplify{{c}*x+{d}})-\\log_a(\\simplify{x^(1/{b2})})\\\\\n \n \\\\\n \n &=&\\log_a\\left(\\simplify[std]{(x^({a2}/{b2})*({c}x+{d}))/(x^(1/{b2}))}\\right)\\\\\n \n &=&\\log_a\\left(\\simplify{x^{f}*({c}x+{d})}\\right)\n \n \\end{eqnarray*}\n \n \\]

\n \n \n \n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "

Express the following in terms of $\\log_a(x)$ and $\\log_a(y)$

\n

\\[\\log_a(x^{\\var{a1}}y^{\\var{b1}})=\\alpha\\log_a(x)+\\beta\\log_a(y)\\]

\n

$\\alpha=\\;\\;$[[0]], $\\beta=\\;\\;$[[1]]

\n

In Show steps you will find a video explaining the rules of logarithms by going through simplification of logs of numbers rather than algebraic expressions.

", "gaps": [{"minvalue": "{a1}", "type": "numberentry", "maxvalue": "{a1}", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "{b1}", "type": "numberentry", "maxvalue": "{b1}", "marks": 0.5, "showPrecisionHint": false}], "steps": [{"prompt": "

This video covers the standard rules for logarithms.

\n

These are, for any base $b \\gt 0$:

\n

\\[\\begin{eqnarray*} &1.& \\log_b(p)+\\log_b(q)&=&\\log_b(p\\times q)\\\\&2.& \\log_b(p)-\\log_b(q)&=&\\log_b\\left(\\frac{p}{ q}\\right)\\\\ &3.& \\log_b(p^r)=r\\log_b(p)\\\\&4.& \\log_b(1)=0\\end{eqnarray*} \\]

\n

 

\n

 

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n

\\[\\simplify[std]{{a2}/{b2}}\\log_a(x)+\\log_a(\\simplify{{c}*x+{d}})-\\log_a(\\simplify{x^(1/{b2})})=\\log_a(q(x))\\]

\n

$q(x)=\\;\\;$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "((x ^ {f}) * (({c} * x) + {d}))", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "extensions": [], "statement": "

Answer the following questions on logarithms.

\n

 

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"c": {"definition": "random(1..9)", "name": "c"}, "d": {"definition": "s4*random(2..9)", "name": "d"}, "f": {"definition": "precround((a2-1)/b2,0)", "name": "f"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "s4": {"definition": "random(1,-1)", "name": "s4"}, "a1": {"definition": "s1*random(2..9)", "name": "a1"}, "a2": {"definition": "1+b2*random(2..5)", "name": "a2"}, "b1": {"definition": "random(2..15)", "name": "b1"}, "b2": {"definition": "random(2..9)", "name": "b2"}}, "metadata": {"notes": "\n \t\t

2/06/2012:

\n \t\t

Added tags.

\n \t\t

Changed statement to make question clearer.

\n \t\t

19/07/2012:

\n \t\t

Added description.

\n \t\t

25/07/2012:

\n \t\t

Added tags.

\n \t\t

Question appears to be working correctly.

\n \t\t

17/08/2012:

\n \t\t

Made copy to include in Simplify Algebraic Expressions exam.

\n \t\t", "description": "

Express $\\log_a(x^{c}y^{d})$ in terms of $\\log_a(x)$ and $\\log_a(y)$. Find $q(x)$ such that $\\frac{f}{g}\\log_a(x)+\\log_a(rx+s)-\\log_a(x^{1/t})=\\log_a(q(x))$.

\n

There is a video included explaining the rules of logarithms by going through simplification of logs of numbers rather than algebraic expressions.

\n

 

\n

 

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}