// Numbas version: exam_results_page_options {"name": "T6Q4 (custom feedback)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"showfrontpage": false, "preventleave": false, "allowregen": true}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

Find the gradient of the curve $y=x^{x+4x^2}$ at the point $(1,1)$.

", "name": "T6Q4 (custom feedback)", "type": "question", "metadata": {"description": "

Logarithmic differentiation question with customised feedback to catch some common errors.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "ungrouped_variables": [], "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}], "variable_groups": [], "tags": [], "variables": {}, "advice": "", "extensions": [], "preamble": {"css": "", "js": ""}, "rulesets": {}, "parts": [{"sortAnswers": false, "type": "gapfill", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "unitTests": [], "prompt": "

$\\frac{dy}{dx}=$ []

", "scripts": {}, "variableReplacements": [], "marks": 0, "showFeedbackIcon": true, "gaps": [{"type": "jme", "answer": "x^(x+4x^2)*(1+4x+(1+8x)*ln(x))", "showCorrectAnswer": true, "customMarkingAlgorithm": "malrules:\n [\n [\"(x+4x^2)*x^(x+4x^2-1)\", \"You cannot use the power rule if there is a variable in the power. Whenever you have $x$'s to the power of $x$'s, what type of differentiation must you use?\"],\n [\"1+4x+(1+8x)*ln(x)\", \"Almost there. Did you remember to multiply both sides by $y$? Remember, when you take the natural log of both sides and then differentiate both sides, the derivative of the left hand side is $\\\\frac{d}{dx} \\\\left( \\\\ln y \\\\right) = \\\\frac{1}{y} \\\\frac{dy}{dx}$, not just $\\\\frac{dy}{dx}$.\"],\n [\"y*(1+4x+(1+8x)*ln(x))\", \"Almost there. Numbas needs you to type in the actual function for $y$ i.e. enter $x^{x+4x^2}$ instead of $y$.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x),\"feedback\":x],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\frac{dy}{dx} \\bigg|_{(1,1)} =$ []

", "scripts": {}, "variableReplacements": [], "marks": 0, "showFeedbackIcon": true, "gaps": [{"type": "numberentry", "showCorrectAnswer": true, "allowFractions": false, "maxValue": "5", "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "correctAnswerStyle": "plain", "scripts": {}, "variableReplacements": [], "correctAnswerFraction": false, "customMarkingAlgorithm": "", "marks": 1, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "minValue": "5", "extendBaseMarkingAlgorithm": true}], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true}]}]}], "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}]}