// Numbas version: exam_results_page_options {"name": "Definite Integrals Exam Q1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Simple Definite Integrals

\n

\n

", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingtype": "absdiff", "type": "jme", "scripts": {}, "variableReplacements": [], "marks": "20", "answer": "{b}+{c}{b}^2/2-{a}-{a}^2{c}/2", "showCorrectAnswer": true, "showpreview": true, "steps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "type": "jme", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "answer": "x+{c}x^2/2", "showpreview": true, "checkingaccuracy": 0.001, "scripts": {}, "checkvariablenames": false, "prompt": "

First, find $\\int (1 + \\var{c}x)dx$ [Do NOT put in the C ]

", "showFeedbackIcon": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst"}], "checkvariablenames": false, "prompt": "

$\\int_\\var{a}^\\var{b}(1 + \\var{c}x)dx$

", "showFeedbackIcon": true, "checkingaccuracy": 0.001, "stepsPenalty": 0, "variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1]}], "extensions": [], "preamble": {"css": "", "js": ""}, "statement": "

Evaluate the integrals: 

", "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "tags": [], "variables": {"j": {"description": "", "name": "j", "group": "Ungrouped variables", "definition": "random(-4..0)", "templateType": "anything"}, "c": {"description": "", "name": "c", "group": "Ungrouped variables", "definition": "random(2..6)", "templateType": "anything"}, "h": {"description": "", "name": "h", "group": "Ungrouped variables", "definition": "random(2..8)", "templateType": "anything"}, "f": {"description": "", "name": "f", "group": "Ungrouped variables", "definition": "random(1..4)", "templateType": "anything"}, "k": {"description": "", "name": "k", "group": "Ungrouped variables", "definition": "random(1..4)", "templateType": "anything"}, "l": {"description": "", "name": "l", "group": "Ungrouped variables", "definition": "random(2..6)", "templateType": "anything"}, "d": {"description": "", "name": "d", "group": "Ungrouped variables", "definition": "random(-4..0)", "templateType": "anything"}, "b": {"description": "", "name": "b", "group": "Ungrouped variables", "definition": "random(1..5)", "templateType": "anything"}, "g": {"description": "", "name": "g", "group": "Ungrouped variables", "definition": "random(2..6)", "templateType": "anything"}, "a": {"description": "", "name": "a", "group": "Ungrouped variables", "definition": "random(-4..0)", "templateType": "anything"}}, "functions": {}, "rulesets": {}, "advice": "

First integrate the function and then substitute in the given limits.

", "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "h", "k", "j", "l"], "name": "Definite Integrals Exam Q1", "type": "question", "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}]}], "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}