// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 6.3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Combining algebraic fractions 6.3", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "combining algebraic fractions", "common denominator"], "advice": "\n

Show steps tells us that a good choice for the denominator of the algebraic fraction we are looking for is  $\\simplify{(x+{p})({a1}x+{b})({a2}x+{d})}$.

\n

Hence we have:
\\[\\begin{eqnarray*} \\simplify{{a} /((x+{p}) ({a1}x + {b})) + ({c} /( (x+{p})({a2}x + {d})))}  &=& \\simplify[std]{({a} * ({a2}*x + {d}) + {c} * ({a1}*x + {b})) / ((x+{p})({a1}*x + {b}) * ({a2}*x + {d})) }\\\\&=& \\simplify{({a*a2 + c*a1} * x + {a * d + c * b}) / ((x+{p})({a1}*x + {b}) * ({a2}*x + {d}))}\\end{eqnarray*}\\]

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"], "std1": ["std", "collectNumbers"]}, "parts": [{"stepspenalty": 1.0, "prompt": "

Express \\[\\simplify{{a} /((x+{p}) ({a1}x + {b})) + ({c} /( (x+{p})({a2}x + {d})))}\\] as a single fraction.

\n

Input the fraction here: [[0]].

\n

Make sure that you simplify the numerator.

\n

 Click on Show steps if you need help. You will lose one mark of you do so.

", "gaps": [{"notallowed": {"message": "

Input as a single fraction and make sure that you simplify the numerator.

", "showstrings": false, "strings": [")-", ")+"], "partialcredit": 0.0}, "checkingaccuracy": 1e-05, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std1", "marks": 2.0, "answer": "({a*a2 + c*a1} * x + {a * d + c * b})/ ((x+{p})({a1}*x + {b}) * ({a2}*x + {d}))", "type": "jme"}], "steps": [{"prompt": "\n

Note that the denominators both have the factor $\\simplify{x+{p}}$ hence we see that a common denominator is $\\simplify{(x+{p})({a1}x+{b})({a2}x+{d})}$ as both denominators, $\\simplify{(x+{p})({a1}x+{b})}$ and  $\\simplify{(x+{p})({a2}x+{d})}$, divide into it.

\n

Note that in your answer you do not need to expand the denominator.

\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\n

Add the following two fractions together and express as a single fraction over a common denominator.

\n

 

\n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "random(-9..9 except 0)", "name": "c"}, "b": {"definition": "random(-9..9 except 0)", "name": "b"}, "d": {"definition": "random(-9..9 except [0,round(b*a2/a1)])", "name": "d"}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb"}, "a1": {"definition": "random(1..8)", "name": "a1"}, "p": {"definition": "random(-9..9 except [round(b/a1),round(d/a2)])", "name": "p"}, "a2": {"definition": "random(1..8)", "name": "a2"}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1"}}, "metadata": {"notes": "

5/08/2012:

\n

Added tags.

\n

Added description.

\n

Changed to two questions, for the numerator and denomimator, rather than one as difficult to trap student input for this example. Still some ambiguity however.

\n

12/08/2012:

\n

Back to one input of a fraction and trapped input in Forbidden Strings.

\n

Used the except feature of ranges to get non-degenerate examples.

\n

Checked calculation.OK.

\n

Improved display in content areas.

\n

02/02/2013:

\n

Added instructions to simplify the numerator.

", "description": "

Express $\\displaystyle \\frac{a}{(x+r)(px + b)} + \\frac{c}{(x+r)(qx + d)}$ as an algebraic single fraction over a common denominator. The question asks for a solution which has denominator $(x+r)(px+b)(qx+d)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}