// Numbas version: finer_feedback_settings {"name": "Solve equations which include a single root (e.g. \\sqrt{x}=blah)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solve equations which include a single root (e.g. \\sqrt{x}=blah)", "tags": [], "metadata": {"description": "
Questions to test if the student knows the inverse of fractional power or root (and how to solve equations that contain them).
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Please complete the following.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"db": {"name": "db", "group": "Ungrouped variables", "definition": "random(-100..100 except -1..1)", "description": "", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "b", "definition": "random(1..100)", "description": "", "templateType": "anything", "can_override": false}, "dc": {"name": "dc", "group": "Ungrouped variables", "definition": "random(-100..100 except -1..1)", "description": "", "templateType": "anything", "can_override": false}, "bxcoeff": {"name": "bxcoeff", "group": "b", "definition": "random(-3..3 except 0..1)", "description": "", "templateType": "anything", "can_override": false}, "intpower": {"name": "intpower", "group": "a", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "intsoln": {"name": "intsoln", "group": "a", "definition": "intrhs^intpower", "description": "", "templateType": "anything", "can_override": false}, "bsoln": {"name": "bsoln", "group": "b", "definition": "bnice^bpower", "description": "", "templateType": "anything", "can_override": false}, "bnice": {"name": "bnice", "group": "b", "definition": "switch(bpower=3 or bpower=2, random(-10..10 except -1..1), bpower=5 or bpower =4, random(-4..4 except -1..1), bpower=7 or bpower=6, random(-3..3 except -1..1), 2)", "description": "((bc-bb)/bxcoeff)^(1/bpower)
", "templateType": "anything", "can_override": false}, "bc": {"name": "bc", "group": "b", "definition": "bnice*bxcoeff+bb", "description": "", "templateType": "anything", "can_override": false}, "bpower": {"name": "bpower", "group": "b", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "ddenom": {"name": "ddenom", "group": "Ungrouped variables", "definition": "random(2..15)", "description": "", "templateType": "anything", "can_override": false}, "dpower": {"name": "dpower", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "intrhs": {"name": "intrhs", "group": "a", "definition": "switch(intpower=3 or intpower=4, random(2..12), intpower=5 or intpower=6, random(2..5), intpower=7 or intpower=8, random(2..3), 2)\n", "description": "intsoln^intpower
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dpower", "dc", "db", "ddenom"], "variable_groups": [{"name": "a", "variables": ["intpower", "intrhs", "intsoln"]}, {"name": "b", "variables": ["bpower", "bnice", "bsoln", "bxcoeff", "bb", "bc"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "If $\\sqrt[\\var{intpower}]{x}=\\var{intrhs}$, then $x=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\sqrt[\\var{intpower}]{x}=\\var{intrhs}$, we raise both sides to the power of $\\var{intpower}$ to get $x$ by itself.
\n| $\\sqrt[\\var{intpower}]{x}$ | \n$=$ | \n$\\var{intrhs}$ | \n
| \n | \n | \n |
| $\\left(\\sqrt[\\var{intpower}]{x}\\right)^{\\var{intpower}}$ | \n$=$ | \n$\\simplify[basic]{({intrhs})^{intpower}}$ | \n
| \n | \n | \n |
| $x$ | \n$=$ | \n$\\var{intsoln}$ | \n
If $\\simplify{{bxcoeff}y^(1/{bpower})+{bb}}=\\var{bc}$, then $y=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\simplify{{bxcoeff}y^(1/{bpower})+{bb}}=\\var{bc}$, we can rearrange the equation to get $y^\\frac{1}{\\var{bpower}}$ by itself and then we can raise both sides to the power of $\\var{bpower}$ to get $y$ by itself.
\n| $\\simplify{{bxcoeff}y^(1/{bpower})+{bb}}$ | \n$=$ | \n$\\var{bc}$ | \n
| \n | \n | \n |
| $\\simplify{{bxcoeff}y^(1/{bpower})}$ | \n$=$ | \n$\\simplify[basic]{{bc}-{bb}}$ | \n
| \n | \n | \n |
| $\\simplify{{bxcoeff}y^(1/{bpower})}$ | \n$=$ | \n$\\simplify{{bc-bb}}$ | \n
| \n | \n | \n |
| $y^\\frac{1}{\\var{bpower}}$ | \n$=$ | \n$\\simplify[!basic]{{bc-bb}/{bxcoeff}}$ | \n
| \n | \n | \n |
| $y^\\frac{1}{\\var{bpower}}$ | \n$=$ | \n$\\simplify{{bc-bb}/{bxcoeff}}$ | \n
| \n | \n | \n |
| $\\left(y^\\frac{1}{\\var{bpower}}\\right)^{\\var{bpower}}$ | \n$=$ | \n$\\simplify[basic]{({(bc-bb)/bxcoeff})^{bpower}}$ | \n
| \n | \n | \n |
| $y$ | \n$=$ | \n$\\var{bsoln}$ | \n
For this question, if the answer was $\\left(\\frac{35}{12}\\right)^{11}-24$, then you could enter (35/12)^(11)-24.
\nIf $\\displaystyle{\\simplify{(root(z+{db},{dpower}))/{ddenom}}}=\\var{dc}$, then $z=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\simplify{(root(z+{db},{dpower}))/{ddenom}}}=\\var{dc}$, we can rearrange the equation to get $\\simplify{(root(z+{db},{dpower}))}$ by itself, then we can raise both sides to the power of $\\var{dpower}$, and finally rearrange to get $z$ by itself.
\n| $\\displaystyle{\\simplify{(root(z+{db},{dpower}))/{ddenom}}}$ | \n$=$ | \n$\\var{dc}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\simplify{(root(z+{db},{dpower}))}}$ | \n$=$ | \n$\\simplify[basic]{{dc}*{ddenom}}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\simplify{(root(z+{db},{dpower}))}}$ | \n$=$ | \n$\\var{dc*ddenom}$ | \n
| \n | \n | \n |
| $\\left(\\sqrt[\\var{dpower}]{\\simplify{z+{db}}}\\right)^\\var{dpower}$ | \n$=$ | \n$\\simplify[basic]{({dc*ddenom})^{dpower}}$ | \n
| \n | \n | \n |
| $\\simplify{z+{db}}$ | \n$=$ | \n$\\simplify[basic]{-{abs(dc*ddenom)}^{dpower}}$ $\\simplify[basic]{({abs(dc*ddenom)})^{dpower}}$ $\\simplify[basic]{({(dc*ddenom)})^{dpower}}$ | \n
| \n | \n | \n |
| $z$ | \n$=$ | \n$\\simplify[basic]{-{abs(dc*ddenom)}^{dpower}-{db}}$ $\\simplify[basic]{({abs(dc*ddenom)})^{dpower}-{db}}$ $\\simplify[basic]{({(dc*ddenom)})^{dpower}-{db}}$ | \n