// Numbas version: finer_feedback_settings {"name": "Elias Jakobus's copy of Owen's copy of Eigenvalues & eigenvectors of a 2x2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["a11", "c1", "a12", "k", "a21", "a22", "lambda1", "lambda2"], "extensions": [], "statement": "

Given the matrix

\n

\\(A =\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\)

", "rulesets": {}, "name": "Elias Jakobus's copy of Owen's copy of Eigenvalues & eigenvectors of a 2x2", "metadata": {"description": "

This question concerns the evaluation of the eigenvalues and corresponding eigenvectors of a 2x2 matrix.

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

The eigenvalues of a matrix are the values of \\(\\lambda\\) that satisfy the relation

\n

\\(|A-\\lambda I| = 0\\)

\n

\\(\\begin{vmatrix} \\var{a11}-\\lambda&\\var{a12}\\\\ \\var{a21}&\\var{a22}-\\lambda\\\\ \\end{vmatrix}=0\\)

\n

This gives:

\n

\\((\\var{a11}-\\lambda)*(\\var{a22}-\\lambda)-(\\var{a12})*(\\var{a21})=0\\)

\n

\\(\\lambda^2-\\simplify{{a11}+{a22}}\\lambda+\\simplify{{a11}*{a22}-{a21}*{a12}}=0\\)

\n

This can be solved using factorisation or by formula to give:

\n

\\(\\lambda =\\var{lambda1}\\) and \\(\\lambda =\\var{lambda2}\\)

\n

An eigenvector \\(v=\\begin{pmatrix} x\\\\ y\\\\ \\end{pmatrix}\\) corresponding to an eigenvalue \\(\\lambda\\) must satisfy the relation:  \\((A-\\lambda I)v = 0\\)

\n

so for \\(\\lambda=\\var{lambda1}\\)  

\n

\\(\\begin{pmatrix} \\simplify{{a11}-{lambda1}}&\\var{a12}\\\\ \\var{a21}&\\simplify{{a22}-{lambda1}}\\\\ \\end{pmatrix}\\begin{pmatrix} x\\\\ \\var{a21}\\\\ \\end{pmatrix}=0\\)           

\n

thus

\n

\\(\\var{a21}x+\\simplify{{a22}-{lambda1}}*\\var{a21}=0\\)

\n

\\(\\var{a21}x=-\\simplify{({a22}-{lambda1})*{a21}}\\)

\n

\\(x=-\\simplify{({a22}-{lambda1})}\\)

\n

", "variables": {"a22": {"definition": "{k}*{a21}+{c1}", "templateType": "anything", "description": "", "name": "a22", "group": "Ungrouped variables"}, "lambda1": {"definition": "min({c1},{a11}+{a22}-{c1})", "templateType": "anything", "description": "", "name": "lambda1", "group": "Ungrouped variables"}, "c1": {"definition": "random(14..20#1)", "templateType": "randrange", "description": "", "name": "c1", "group": "Ungrouped variables"}, "k": {"definition": "random(1..6#1)", "templateType": "randrange", "description": "", "name": "k", "group": "Ungrouped variables"}, "a21": {"definition": "random(1..5#1)", "templateType": "randrange", "description": "", "name": "a21", "group": "Ungrouped variables"}, "a12": {"definition": "k*(a11-c1)", "templateType": "anything", "description": "", "name": "a12", "group": "Ungrouped variables"}, "lambda2": {"definition": "max({c1},{a11}+{a22}-{c1})", "templateType": "anything", "description": "", "name": "lambda2", "group": "Ungrouped variables"}, "a11": {"definition": "random(1..10#1)", "templateType": "randrange", "description": "", "name": "a11", "group": "Ungrouped variables"}}, "variable_groups": [], "functions": {}, "parts": [{"variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "minValue": "lambda1", "precisionMessage": "You have not given your answer to the correct precision.", "marks": 1, "scripts": {}, "showPrecisionHint": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "variableReplacements": [], "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "precisionType": "dp", "precision": 0, "maxValue": "lambda1", "precisionPartialCredit": 0}, {"allowFractions": false, "minValue": "lambda2", "precisionMessage": "You have not given your answer to the correct precision.", "marks": 1, "scripts": {}, "showPrecisionHint": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "variableReplacements": [], "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "precisionType": "dp", "precision": 0, "maxValue": "lambda2", "precisionPartialCredit": 0}], "prompt": "

Calculate the eigenvalues of the matrix A

\n

\\(\\lambda_1\\) is the lesser of the two eigenvalues and \\(\\lambda_2\\) is the greater of the two eigenvalues;

\n

\\(\\lambda_1\\) = [[0]]

\n

\\(\\lambda_2\\) = [[1]]

", "showFeedbackIcon": true, "type": "gapfill", "scripts": {}, "marks": 0, "variableReplacements": [], "showCorrectAnswer": true}, {"variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "minValue": "{lambda1}-{a22}", "precisionMessage": "You have not given your answer to the correct precision.", "marks": 1, "scripts": {}, "showPrecisionHint": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "variableReplacements": [], "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "precisionType": "dp", "precision": 0, "maxValue": "{lambda1}-{a22}", "precisionPartialCredit": 0}, {"allowFractions": false, "minValue": "{lambda2}-{a22}", "precisionMessage": "You have not given your answer to the correct precision.", "marks": 1, "scripts": {}, "showPrecisionHint": false, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "variableReplacements": [], "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "precisionType": "dp", "precision": 0, "maxValue": "{lambda2}-{a22}", "precisionPartialCredit": 0}], "prompt": "

For the lesser eigenvalue \\(\\lambda_1\\) the corresponding eigenvector is \\(v_1=\\begin{pmatrix}x\\\\ \\var{a21}\\\\ \\end{pmatrix}\\)

\n

Enter the value for \\(x=\\) [[0]]

\n

For the greater eigenvalue \\(\\lambda_2\\) the corresponding eigenvector is \\(v_1=\\begin{pmatrix}x\\\\ \\var{a21}\\\\ \\end{pmatrix}\\)

\n

Enter the value for \\(x=\\) [[1]]

\n

", "showFeedbackIcon": true, "type": "gapfill", "scripts": {}, "marks": 0, "variableReplacements": [], "showCorrectAnswer": true}], "tags": [], "type": "question", "contributors": [{"name": "Elias Jakobus Willemse", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/846/"}]}]}], "contributors": [{"name": "Elias Jakobus Willemse", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/846/"}]}