// Numbas version: finer_feedback_settings {"name": "Exact values for sin, cos, tan (0 to 2pi, radians)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [["question-resources/unit_circle_working_radians.svg", "unit_circle_working_radians.svg"], ["question-resources/exact_values_radians.svg", "exact_values_radians_1THxMnw.svg"], ["question-resources/ASTCwhite.png", "ASTCwhite_4z47Ylp.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Exact values for sin, cos, tan (0 to 2pi, radians)", "tags": [], "metadata": {"description": "

testing sin, cos, tan of  random(0,90,120,135,150,180,210,225,240,270,300,315,330) degrees but in radians

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Often we prefer to work with exact values rather than approximations from a calculator. In this question we require you input your answer without decimals and without entering the words sin, cos or tan. For example, to input the exact value of $\\sin\\left(\\dfrac{\\pi}{3}\\right)$, which is $\\dfrac{\\sqrt{3}}{2}$, you would input sqrt(3)/2

", "advice": "

Recall the unit circle definitions:

\n\n

In particular, the angle of $\\var{thetadisplay}$ puts the point {textquadrant}.

\n

{diagram}

\n

Since this point falls on an axis and the point is on the unit circle, it is clear that its coordinates are $(\\var{cos({thetarad})}, \\var{sin({thetarad})})$. From these, we can conclude that 

\n

$\\sin\\left(\\var{thetadisplay}\\right)=\\var{sin({thetarad})}$,

\n

$\\cos\\left(\\var{thetadisplay}\\right)=\\var{cos({thetarad})}$, and

\n

$\\tan\\left(\\var{thetadisplay}\\right)=\\dfrac{\\sin\\left(\\var{thetadisplay}\\right)}{\\cos\\left(\\var{thetadisplay}\\right)}=\\dfrac{\\var{sin({thetarad})}}{\\var{cos({thetarad})}}\\var{if(theta=90 or theta=270, \" which is undefined\",\" = \" + precround(tan(thetarad),0))}.$

\n
\n

The triangle {textquadrant} has the same side lengths as the related triangle in the first quadrant (they are congruent). Therefore, we can recall or use right-angled triangle trigonometry to determine the lengths of the triangle in the first quadrant and then change the signs as needed. Recall: 

\n

By drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ for the angles $\\dfrac{\\pi}{6}$, $\\dfrac{\\pi}{4}$ and $\\dfrac{\\pi}{3}$.

\n

\n

Alternatively, one can memorise the following table: 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\dfrac{\\pi}{6}$$\\dfrac{\\pi}{4}$$\\dfrac{\\pi}{3}$
 
$\\sin$$\\dfrac{1}{2}$$\\dfrac{1}{\\sqrt{2}}$$\\dfrac{\\sqrt{3}}{2}$
 
$\\cos$$\\dfrac{\\sqrt{3}}{2}$$\\dfrac{1}{\\sqrt{2}}$$\\dfrac{1}{2}$
 
$\\tan$$\\dfrac{1}{\\sqrt{3}}$$1$$\\sqrt{3}$
\n

\n

From the above, the triangle in the first quadrant tells us that:

\n

$\\sin\\left(\\var{phiraddisplay}\\right)=\\;\\;\\dfrac{1}{2}$$\\sin\\left(\\var{phiraddisplay}\\right)=\\dfrac{1}{\\sqrt{2}}$$\\sin\\left(\\var{phiraddisplay}\\right)=\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos\\left(\\var{phiraddisplay}\\right)=\\dfrac{\\sqrt{3}}{2}$$\\cos\\left(\\var{phiraddisplay}\\right)=\\dfrac{1}{\\sqrt{2}}$$\\cos\\left(\\var{phiraddisplay}\\right)=\\;\\;\\dfrac{1}{2}$

\n

$\\tan\\left(\\var{phiraddisplay}\\right)=\\dfrac{1}{\\sqrt{3}}$$\\tan\\left(\\var{phiraddisplay}\\right)=\\;\\;1$$\\tan\\left(\\var{phiraddisplay}\\right)=\\sqrt{3}$

\n

Since $\\theta=\\var{thetadisplay}$ puts us {textquadrant}, the $x$-coordinate (the cosine value) is positive,negative, and the $y$-coordinate (the sine value) is positivenegative. That is:

\n

$\\sin\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\sin\\left(\\var{phiraddisplay}\\right)=\\;\\;\\phantom{-}\\dfrac{1}{2}$$\\sin\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\sin\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\sin\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\sin\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos\\left(\\var{thetadisplay}\\right)=-\\cos\\left(\\var{phiraddisplay}\\right)=-\\dfrac{\\sqrt{3}}{2}$$\\cos\\left(\\var{thetadisplay}\\right)=-\\cos\\left(\\var{phiraddisplay}\\right)=-\\dfrac{1}{\\sqrt{2}}$$\\cos\\left(\\var{thetadisplay}\\right)=-\\cos\\left(\\var{phiraddisplay}\\right)=\\;\\;-\\dfrac{1}{2}$

\n

$\\tan\\left(\\var{thetadisplay}\\right)=-\\tan\\left(\\var{phiraddisplay}\\right)=-\\dfrac{1}{\\sqrt{3}}$$\\tan\\left(\\var{thetadisplay}\\right)=-\\tan\\left(\\var{phiraddisplay}\\right)=\\;\\;-1$$\\tan\\left(\\var{thetadisplay}\\right)=-\\tan\\left(\\var{phiraddisplay}\\right)=-\\sqrt{3}$

\n

$\\sin\\left(\\var{thetadisplay}\\right)=-\\sin\\left(\\var{phiraddisplay}\\right)=\\;\\;-\\dfrac{1}{2}$$\\sin\\left(\\var{thetadisplay}\\right)=-\\sin\\left(\\var{phiraddisplay}\\right)=-\\dfrac{1}{\\sqrt{2}}$$\\sin\\left(\\var{thetadisplay}\\right)=-\\sin\\left(\\var{phiraddisplay}\\right)=-\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos\\left(\\var{thetadisplay}\\right)=-\\cos\\left(\\var{phiraddisplay}\\right)=-\\dfrac{\\sqrt{3}}{2}$$\\cos\\left(\\var{thetadisplay}\\right)=-\\cos\\left(\\var{phiraddisplay}\\right)=-\\dfrac{1}{\\sqrt{2}}$$\\cos\\left(\\var{thetadisplay}\\right)=-\\cos\\left(\\var{phiraddisplay}\\right)=\\;\\;-\\dfrac{1}{2}$

\n

$\\tan\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\tan\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\dfrac{1}{\\sqrt{3}}$$\\tan\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\tan\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\;\\;1$$\\tan\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\tan\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\sqrt{3}$

\n

$\\sin\\left(\\var{thetadisplay}\\right)=-\\sin\\left(\\var{phiraddisplay}\\right)=\\;\\;-\\dfrac{1}{2}$$\\sin\\left(\\var{thetadisplay}\\right)=-\\sin\\left(\\var{phiraddisplay}\\right)=-\\dfrac{1}{\\sqrt{2}}$$\\sin\\left(\\var{thetadisplay}\\right)=-\\sin\\left(\\var{phiraddisplay}\\right)=-\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\cos\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$$\\cos\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\cos\\left(\\var{phiraddisplay}\\right)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\cos\\left(\\var{thetadisplay}\\right)=\\phantom{-}\\cos\\left(\\var{phiraddisplay}\\right)=\\;\\;\\phantom{-}\\dfrac{1}{2}$

\n

$\\tan\\left(\\var{thetadisplay}\\right)=-\\tan\\left(\\var{phiraddisplay}\\right)=-\\dfrac{1}{\\sqrt{3}}$$\\tan\\left(\\var{thetadisplay}\\right)=-\\tan\\left(\\var{phiraddisplay}\\right)=\\;\\;-1$$\\tan\\left(\\var{thetadisplay}\\right)=-\\tan\\left(\\var{phiraddisplay}\\right)=-\\sqrt{3}$

\n

An alternative approach is to use the mnemonic \"All Stations TCentral\" or \"ASTC\" to recall which trig functions are positive in each quadrant (and hence which are negative):

\n

\n
\n

", "rulesets": {}, "extensions": ["geogebra"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"thetalist": {"name": "thetalist", "group": "Ungrouped variables", "definition": "random([0,0],[pi/2,'\\$\\\\dfrac{\\\\pi}{2}\\$'],[2pi/3,'\\$\\\\dfrac{2\\\\pi}{3}\\$'],[3pi/4,'\\$\\\\dfrac{3\\\\pi}{4}\\$'],[5pi/6,'\\$\\\\dfrac{5\\\\pi}{6}\\$'],[pi,'\\$\\\\pi\\$'],[7pi/6,'\\$\\\\dfrac{7\\\\pi}{6}\\$'],[5pi/4,'\\$\\\\dfrac{5\\\\pi}{4}\\$'],[4pi/3,'\\$\\\\dfrac{4\\\\pi}{3}\\$'],[3pi/2,'\\$\\\\dfrac{3\\\\pi}{2}\\$'],[5pi/3,'\\$\\\\dfrac{5\\\\pi}{3}\\$'],[7pi/4,'\\$\\\\dfrac{7\\\\pi}{4}\\$'],[11pi/6,'\\$\\\\dfrac{11\\\\pi}{6}\\$'])", "description": "", "templateType": "anything", "can_override": false}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "thetarad/pi*180", "description": "", "templateType": "anything", "can_override": false}, "thetadisplay": {"name": "thetadisplay", "group": "Ungrouped variables", "definition": "thetalist[1]", "description": "", "templateType": "anything", "can_override": false}, "thetarad": {"name": "thetarad", "group": "Ungrouped variables", "definition": "thetalist[0]", "description": "", "templateType": "anything", "can_override": false}, "quadrant": {"name": "quadrant", "group": "Ungrouped variables", "definition": "switch(90The exact value of $\\sin\\left(\\var{thetadisplay}\\right)$ is [[0]].

\n

The exact value of $\\cos\\left(\\var{thetadisplay}\\right)$ is [[1]].

\n

If $\\tan\\left(\\var{thetadisplay}\\right)$ is defined, what is its exact value? Otherwise, enter undefined [[2]].

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sin({thetarad})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cos({thetarad})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{if(thetarad=pi/2 or thetarad=3*pi/2,expression('undefined'),tan(thetarad))}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": ["question-resources/unit_circle_working_radians.svg", "question-resources/exact_values_radians.svg", "question-resources/ASTCwhite.png"]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}