// Numbas version: finer_feedback_settings {"name": "Geometry. Right-angled triangle II. Version 6", "extensions": [], "custom_part_types": [], "resources": [["question-resources/triangle_6nKlln9.png", "/srv/numbas/media/question-resources/triangle_6nKlln9.png"], ["question-resources/triangle_2.png", "/srv/numbas/media/question-resources/triangle_2.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "advice": "
This is a calculator question. You will need to use Pythagorus Theorem and SOH CAH TOA. Google these if you need a recap.
\nFinding unknown sides/angles in right-angled triangles.
\nVersion 1: b,c known
\nVersion 2: a,x known
\nVersion 3: a,y known
\nVersion 4: b,x known
\nVersion 5: b,a known
\nVersion 6: c,a known
"}, "functions": {}, "ungrouped_variables": ["c", "a", "x", "y", "b"], "variablesTest": {"maxRuns": 100, "condition": ""}, "parts": [{"unitTests": [], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "gapfill", "showCorrectAnswer": true, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "customMarkingAlgorithm": "", "scripts": {}, "prompt": "$a=\\var{a}$ and $c = \\var{c}$. Calculate the other quantities.
\n$x = $ [[0]]
\n$y =$ [[1]]
\n$b = $ [[2]]
\n\nGive your angles in degrees and give all answers to 3 s.f.
", "marks": 0, "gaps": [{"unitTests": [], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "correctAnswerStyle": "plain", "type": "numberentry", "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "allowFractions": false, "maxValue": "{x}", "minValue": "{x}", "customMarkingAlgorithm": "", "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "marks": 1, "mustBeReduced": false}, {"unitTests": [], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "correctAnswerStyle": "plain", "type": "numberentry", "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "allowFractions": false, "maxValue": "{y}", "minValue": "{y}", "customMarkingAlgorithm": "", "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "marks": 1, "mustBeReduced": false}, {"unitTests": [], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "correctAnswerStyle": "plain", "type": "numberentry", "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerFraction": false, "extendBaseMarkingAlgorithm": true, "allowFractions": false, "maxValue": "{b}", "minValue": "{b}", "customMarkingAlgorithm": "", "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "marks": 1, "mustBeReduced": false}]}], "extensions": [], "rulesets": {}, "variables": {"x": {"definition": "siground(arccos(c/a)/pi*180,3)", "description": "", "name": "x", "templateType": "anything", "group": "Ungrouped variables"}, "y": {"definition": "90-x", "description": "", "name": "y", "templateType": "anything", "group": "Ungrouped variables"}, "c": {"definition": "random(20..45)", "description": "", "name": "c", "templateType": "anything", "group": "Ungrouped variables"}, "b": {"definition": "siground(sqrt(a^2-c^2),3)\n", "description": "", "name": "b", "templateType": "anything", "group": "Ungrouped variables"}, "a": {"definition": "round(1.4*c)-random(3..6)", "description": "", "name": "a", "templateType": "anything", "group": "Ungrouped variables"}}, "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}