// Numbas version: finer_feedback_settings {"name": "Fraction multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

a)

\n

To multiply $\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$, address the numerators and denominators separately.

\n

Multiply the numerators across both fractions.

\n

$\\var{a_coprime}\\times\\var{b_coprime}=\\var{ab}$,

\n

and then multiply the denominators across both fractions.

\n

$\\var{c_coprime}\\times\\var{d_coprime}=\\var{cd}$.

\n

The values of the multiplied numerators and denominators will be the numerator and denominator of the new fraction: $\\displaystyle\\frac{\\var{ab}}{\\var{cd}}$.

\n

This answer may need simplifying down, and to do this, find the greatest common divisor in both the numerator and denominator and divide by this number.

\n

The greatest common divisor of $\\var{ab}$ and $\\var{cd}$ is $\\var{gcd}$.

\n

By using $\\var{gcd}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{ab}/{cd}}$.

\n

\n

b)

\n

To multiply $\\displaystyle\\simplify{{k_coprime}/{j_coprime}}\\times\\var{f}\\frac{\\var{g_coprime}}{\\var{h_coprime}}$, we first need to change the mixed number term into an improper fraction. 

\n

To do this, we need to multiply $(\\var{f}\\times\\var{h_coprime}=\\var{fh})$ and add it to what was already on the numerator of the fraction, $\\var{g_coprime}$.

\n

$\\displaystyle\\frac{(\\var{fh}+\\var{g_coprime})}{\\var{h_coprime}}= \\displaystyle\\frac{\\var{numif}}{\\var{h_coprime}}$.

\n

Next, we multiply the numerators and denominators across both fractions separately, as done in part a)

\n

$\\var{k_coprime}\\times\\var{numif} = \\var{num}$,

\n

$\\var{j_coprime}\\times\\var{h_coprime}=\\var{denom}$.

\n

This gives the unsimplified version of the new fraction $\\displaystyle\\frac{\\var{num}}{\\var{denom}}$.

\n

To simplify, find the greatest common divisor in both the numerator and denominator and divide by this number. 

\n

The greatest common divisor of $\\var{num}$ and $\\var{denom}$ is $\\var{gcdb}$.

\n

By using $\\var{gcdb}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{num}/{denom}}$.

\n

\n

\n

c)

\n

To square a fraction means to multiply the fraction by itself. To do this, multiply the numerators and denominators across individually.

\n

$\\displaystyle\\bigg(\\frac{\\var{l_coprime}}{\\var{m_coprime}}\\bigg)^2=\\frac{\\var{l_coprime}}{\\var{m_coprime}}\\times\\frac{\\var{l_coprime}}{\\var{m_coprime}}=\\frac{\\var{l_coprime^2}}{\\var{m_coprime^2}}.$

\n

From this, we should look if it is possible to simplify by finding the highest common divisor of $\\var{l_coprime^2}$ and $\\var{m_coprime^2}.$

\n

The greatest common divisor is $\\var{gcd_lcmc}$.

\n

Therefore, it is not possible to simplify this further, and the final answer is

\n

By simplifying with this value, the final answer is

\n

$\\displaystyle\\frac{\\var{l_coprime2}}{\\var{m_coprime2}}$.

\n

\n

d)

\n

Helen was on holiday for $28$ days and spent $\\displaystyle\\frac{\\var{aa}}{7}$ of her time in Spain. 

\n

$\\displaystyle\\frac{\\var{aa}}{7}\\times\\frac{28}{1}=\\frac{\\var{bb}}{7}=\\var{cc}$ days in Spain. 

\n

Whilst in Spain, she spends $\\displaystyle\\frac{\\var{dd}}{4}$ of her time in Barcelona.

\n

$\\displaystyle\\frac{\\var{dd}}{4}\\times\\frac{\\var{cc}}{1}=\\frac{\\var{ddcc}}{4}=\\var{ee}$ days in Barcelona. 

\n

", "statement": "

Evaluate the following multiplications, giving each fraction in its simplest form.

", "variables": {"k": {"name": "k", "group": "Part b", "templateType": "anything", "description": "

Random number between 1 and 20

", "definition": "random(1..7 except j)"}, "bb": {"name": "bb", "group": "Part d", "templateType": "anything", "description": "", "definition": "28*aa"}, "cc": {"name": "cc", "group": "Part d", "templateType": "anything", "description": "", "definition": "bb/7"}, "g": {"name": "g", "group": "Part b", "templateType": "randrange", "description": "

Random number between 1 and 20.

", "definition": "random(1..7#1)"}, "cd": {"name": "cd", "group": "Part a", "templateType": "anything", "description": "

Variable c times variable d.

", "definition": "c_coprime*d_coprime"}, "a": {"name": "a", "group": "Part a", "templateType": "anything", "description": "

Random number from 1 to 12.

", "definition": "random(2..12 except c)"}, "d": {"name": "d", "group": "Part a", "templateType": "randrange", "description": "

Random number from 1 to 12.

", "definition": "random(2..12#1)"}, "l": {"name": "l", "group": "Part c", "templateType": "anything", "description": "", "definition": "random(1..12)"}, "numif": {"name": "numif", "group": "Part b", "templateType": "anything", "description": "

Numerator of the improper fraction converted from a mixed number.

", "definition": "(f*h_coprime)+g_coprime"}, "gcd_gh": {"name": "gcd_gh", "group": "Part b", "templateType": "anything", "description": "", "definition": "gcd(g,h)"}, "fh": {"name": "fh", "group": "Part b", "templateType": "anything", "description": "

Variable f times variable h

", "definition": "f*h_coprime"}, "g_coprime": {"name": "g_coprime", "group": "Part b", "templateType": "anything", "description": "", "definition": "g/gcd_gh"}, "j_coprime": {"name": "j_coprime", "group": "Part b", "templateType": "anything", "description": "", "definition": "j/gcd_kj"}, "gcd_kj": {"name": "gcd_kj", "group": "Part b", "templateType": "anything", "description": "", "definition": "gcd(k,j)"}, "f": {"name": "f", "group": "Part b", "templateType": "randrange", "description": "

Random number between 1 and 4 - integer part of the mixed number.

", "definition": "random(1..4#1)"}, "c_coprime": {"name": "c_coprime", "group": "Part a", "templateType": "anything", "description": "", "definition": "c/gcd_ac"}, "gcd": {"name": "gcd", "group": "Part a", "templateType": "anything", "description": "", "definition": "gcd(ab,cd)"}, "b": {"name": "b", "group": "Part a", "templateType": "randrange", "description": "

Random number from 1 to 12.

", "definition": "random(2..12#1)"}, "d_coprime": {"name": "d_coprime", "group": "Part a", "templateType": "anything", "description": "", "definition": "d/gcd_bd"}, "ddcc": {"name": "ddcc", "group": "Part d", "templateType": "anything", "description": "", "definition": "dd*cc"}, "gcdb": {"name": "gcdb", "group": "Part b", "templateType": "anything", "description": "", "definition": "gcd(num,denom)"}, "gcd_ac": {"name": "gcd_ac", "group": "Part a", "templateType": "anything", "description": "

PART A

", "definition": "gcd(a,c)"}, "denom": {"name": "denom", "group": "Part b", "templateType": "anything", "description": "

Denominator of new fraction.

", "definition": "j_coprime*(h_coprime/gcda)"}, "l_coprime": {"name": "l_coprime", "group": "Part c", "templateType": "anything", "description": "", "definition": "l/gcd_lm"}, "m": {"name": "m", "group": "Part c", "templateType": "anything", "description": "", "definition": "random(1..12 except l)"}, "a_coprime": {"name": "a_coprime", "group": "Part a", "templateType": "anything", "description": "", "definition": "a/gcd_ac"}, "h": {"name": "h", "group": "Part b", "templateType": "randrange", "description": "

Random number between 1 and 20.

", "definition": "random(7..10#1)"}, "num": {"name": "num", "group": "Part b", "templateType": "anything", "description": "

Numerator of gap 0

", "definition": "k_coprime*{numif/gcda}"}, "m_coprime": {"name": "m_coprime", "group": "Part c", "templateType": "anything", "description": "", "definition": "m/gcd_lm"}, "aa": {"name": "aa", "group": "Part d", "templateType": "anything", "description": "", "definition": "random(1..6)"}, "gcda": {"name": "gcda", "group": "Part b", "templateType": "anything", "description": "

gcd of the numerator of the improper fraction

", "definition": "gcd({numif},{h_coprime})"}, "h_coprime": {"name": "h_coprime", "group": "Part b", "templateType": "anything", "description": "", "definition": "h/gcd_gh"}, "ee": {"name": "ee", "group": "Part d", "templateType": "anything", "description": "", "definition": "ddcc/4"}, "c": {"name": "c", "group": "Part a", "templateType": "anything", "description": "

Random number from 1 to 12.

", "definition": "random(3,5,7,11)"}, "b_coprime": {"name": "b_coprime", "group": "Part a", "templateType": "anything", "description": "", "definition": "b/gcd_bd"}, "l_coprime2": {"name": "l_coprime2", "group": "Part c", "templateType": "anything", "description": "", "definition": "l_coprime^2/gcd_lcmc"}, "k_coprime": {"name": "k_coprime", "group": "Part b", "templateType": "anything", "description": "", "definition": "k/gcd_kj"}, "j": {"name": "j", "group": "Part b", "templateType": "anything", "description": "

Random number between 1 and 20

", "definition": "Random(3,5,7,11,13,17)"}, "dd": {"name": "dd", "group": "Part d", "templateType": "anything", "description": "", "definition": "random(1..3)"}, "gcd_lcmc": {"name": "gcd_lcmc", "group": "Part c", "templateType": "anything", "description": "", "definition": "gcd((l_coprime)^2,(m_coprime)^2)"}, "m_coprime2": {"name": "m_coprime2", "group": "Part c", "templateType": "anything", "description": "", "definition": "m_coprime^2/gcd_lcmc"}, "gcd_lm": {"name": "gcd_lm", "group": "Part c", "templateType": "anything", "description": "", "definition": "gcd(l,m)"}, "ab": {"name": "ab", "group": "Part a", "templateType": "anything", "description": "

Variable a times variable b

", "definition": "a_coprime*b_coprime"}, "gcd_bd": {"name": "gcd_bd", "group": "Part a", "templateType": "anything", "description": "", "definition": "gcd(b,d)"}, "gcd2": {"name": "gcd2", "group": "Part b", "templateType": "anything", "description": "", "definition": "gcd(num,denom)"}}, "tags": ["improper fractions", "mixed numbers", "multiplication of fractions", "multiplying fractions", "squared fraction", "taxonomy"], "ungrouped_variables": [], "functions": {}, "name": "Fraction multiplication", "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "extensions": [], "type": "question", "variable_groups": [{"variables": ["a", "b", "c", "d", "a_coprime", "b_coprime", "c_coprime", "d_coprime", "gcd_ac", "gcd_bd", "ab", "cd", "gcd"], "name": "Part a"}, {"variables": ["f", "g", "g_coprime", "h", "h_coprime", "gcd_gh", "k", "k_coprime", "j", "j_coprime", "gcd_kj", "fh", "numif", "num", "denom", "gcda", "gcdb", "gcd2"], "name": "Part b"}, {"variables": ["aa", "bb", "cc", "dd", "ddcc", "ee"], "name": "Part d"}, {"variables": ["l", "m", "gcd_lm", "l_coprime", "m_coprime", "gcd_lcmc", "l_coprime2", "m_coprime2"], "name": "Part c"}], "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "

Several problems involving the multiplication of fractions, with increasingly difficult examples, including a mixed fraction and a squared fraction. The final part is a word problem. 

", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "{ab}/{gcd}", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "{ab}/{gcd}", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "{cd}/{gcd}", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "{cd}/{gcd}", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}], "type": "gapfill", "prompt": "

$\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$ =  [[0]] [[1]]

", "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "num/gcd2", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "num/gcd2", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "denom/gcd2", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "denom/gcd2", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}], "type": "gapfill", "prompt": "

$\\displaystyle\\simplify{{k}/{j}}\\times\\var{f}\\frac{\\var{g}}{\\var{h}}$ =  [[0]] [[1]]

", "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "l_coprime2", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "l_coprime2", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "m_coprime2", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "m_coprime2", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}], "type": "gapfill", "prompt": "

$\\displaystyle\\bigg(\\frac{\\var{l_coprime}}{\\var{m_coprime}}\\bigg)^2= $ [[0]] [[1]]

", "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "ee", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "ee", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "showFeedbackIcon": true}], "type": "gapfill", "prompt": "

Helen went on holiday in Europe. She spent $\\displaystyle\\frac{\\var{aa}}{7}$ of her time on holiday in Spain. Whilst in Spain, she spent $\\displaystyle\\frac{\\var{dd}}{4}$ of her time in Barcelona. 

\n

If her holiday lasted for $28$ days, how many days was she in Barcelona? 

\n

Helen was in Barcelona for [[0]] days.

", "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}]}