// Numbas version: finer_feedback_settings {"name": "Square and cube numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"x": {"templateType": "anything", "definition": "sort([x1,x2,x3,x4,x5])", "description": "
Sorted list of integers from 1 to 12.
", "name": "x", "group": "Ungrouped variables"}, "x1": {"templateType": "anything", "definition": "random(1..3)", "description": "", "name": "x1", "group": "Ungrouped variables"}, "y2": {"templateType": "anything", "definition": "y^2", "description": "Squared number in part c).
", "name": "y2", "group": "Ungrouped variables"}, "x5": {"templateType": "anything", "definition": "random(10..12 except x1 except x2 except x3 except x4)", "description": "", "name": "x5", "group": "Ungrouped variables"}, "x4": {"templateType": "anything", "definition": "random(7..10 except x1 except x2 except x3)", "description": "", "name": "x4", "group": "Ungrouped variables"}, "x3": {"templateType": "anything", "definition": "random(5..7 except x1 except x2)", "description": "", "name": "x3", "group": "Ungrouped variables"}, "ly": {"templateType": "anything", "definition": "y2 - 2y + random(2..4)", "description": "Lower bound in part c).
", "name": "ly", "group": "Ungrouped variables"}, "x2": {"templateType": "anything", "definition": "random(3..5 except x1)", "description": "", "name": "x2", "group": "Ungrouped variables"}, "uy": {"templateType": "anything", "definition": "y2 + 2y - random(2..5)", "description": "Upper bound in part c).
", "name": "uy", "group": "Ungrouped variables"}, "y": {"templateType": "anything", "definition": "random(3..12 except x)", "description": "Answer to part c).
", "name": "y", "group": "Ungrouped variables"}}, "type": "question", "name": "Square and cube numbers", "parts": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[0]*x[0]", "maxValue": "x[0]*x[0]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[1]*x[1]", "maxValue": "x[1]*x[1]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[2]*x[2]", "maxValue": "x[2]*x[2]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[3]*x[3]", "maxValue": "x[3]*x[3]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[4]*x[4]", "maxValue": "x[4]*x[4]", "marks": 1, "variableReplacements": []}], "prompt": "Find the following:
\n$\\var{x[0]}^2 =$ [[0]]
\n$\\var{x[1]}^2 =$ [[1]]
\n$\\var{x[2]}^2 =$ [[2]]
\n$\\var{x[3]}^2 =$ [[3]]
\n$\\var{x[4]}^2 =$ [[4]]
\n"}, {"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[0]*x[0]*x[0]", "maxValue": "x[0]*x[0]*x[0]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[1]*x[1]*x[1]", "maxValue": "x[1]*x[1]*x[1]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[2]*x[2]*x[2]", "maxValue": "x[2]*x[2]*x[2]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[3]*x[3]*x[3]", "maxValue": "x[3]*x[3]*x[3]", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "x[4]*x[4]*x[4]", "maxValue": "x[4]*x[4]*x[4]", "marks": 1, "variableReplacements": []}], "prompt": "Find the following:
\n$\\var{x[0]}^3 =$ [[0]]
\n$\\var{x[1]}^3 =$ [[1]]
\n$\\var{x[2]}^3 =$ [[2]]
\n$\\var{x[3]}^3 =$ [[3]]
\n$\\var{x[4]}^3 =$ [[4]]
"}, {"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "y^2", "maxValue": "y^2", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "scripts": {}, "minValue": "y", "maxValue": "y", "marks": "1", "variableReplacements": []}], "prompt": "Find a square number $y^2$ between $\\var{ly}$ and $\\var{uy}$ and its integer root $y$.
\n$y^2 = $ [[0]]
\n$y = $ [[1]]
"}], "advice": "Squared integers are called square numbers. It may be useful to remember the first few square numbers to be able to use them without a calculator.
\nHere:
\n\\[ \\begin{align} \\var{x[0]}^2 &= \\var{x[0]} \\times \\var{x[0]} \\\\&= \\var{x[0]^2} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[1]}^2 &= \\var{x[1]} \\times \\var{x[1]} \\\\&= \\var{x[1]^2} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[2]}^2 &= \\var{x[2]} \\times \\var{x[2]} \\\\&= \\var{x[2]^2} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[3]}^2 &= \\var{x[3]} \\times \\var{x[3]} \\\\&= \\var{x[3]^2} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[4]}^2 &= \\var{x[4]} \\times \\var{x[4]} \\\\&= \\var{x[4]^2} \\text{.}\\end{align}\\]
\n\nCubed integers are called cubed numbers. To obtain these, we would typically always use a calculator.
\nWe can either cube the number $x$:
\n\\[ \\begin{align} \\var{x[0]}^3 &= \\var{x[0]} \\times \\var{x[0]} \\times \\var{x[0]} \\\\&= \\var{x[0]^3} \\text{,} \\end{align}\\]
\nor we can multiply the square number $(x_n)^2$ from part a) by the appropriate $x_n$:
\n\\[ \\begin{align} \\var{x[0]}^3 &= \\var{x[0]}^2 \\times \\var{x[0]} \\\\&= \\var{x[0]^2} \\times \\var{x[0]}\\\\&= \\var{x[0]^3} \\text{.} \\end{align}\\]
\n\\[ \\begin{align} \\var{x[1]}^3 &= \\var{x[1]} \\times \\var{x[1]} \\times \\var{x[1]} \\\\ &= \\var{x[1]^3} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[2]}^3 &= \\var{x[2]} \\times \\var{x[2]} \\times \\var{x[2]} \\\\ &= \\var{x[2]^3} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[3]}^3 &= \\var{x[3]} \\times \\var{x[3]} \\times \\var{x[3]} \\\\ &= \\var{x[3]^3} \\text{.}\\end{align}\\]
\n\\[ \\begin{align} \\var{x[3]}^4 &= \\var{x[4]} \\times \\var{x[4]} \\times \\var{x[4]} \\\\ &= \\var{x[4]^3} \\text{.}\\end{align}\\]
\n\nHere is a table of square numbers for integers from $1$ to $15$:
\n$y$ | \n$1$ | \n$2$ | \n$3$ | \n$4$ | \n$5$ | \n$6$ | \n$7$ | \n$8$ | \n$9$ | \n$10$ | \n$11$ | \n$12$ | \n$13$ | \n$14$ | \n$15$ | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$y^2$ | \n$1$ | \n$4$ | \n$9$ | \n$16$ | \n$25$ | \n$36$ | \n$49$ | \n$64$ | \n$81$ | \n$100$ | \n$121$ | \n$144$ | \n$169$ | \n$196$ | \n$225$ | \n
The only square number between $\\var{ly}$ and $\\var{uy}$ is $\\var{y2}$.
\nTo calculate $y$ we must calculate the square root of $y^2$,
\n\\[ \\sqrt{\\var{y2}} = \\var{y} \\text{.}\\]
\nThis is our integer $y$.
\n\n", "tags": ["cube", "indices", "multiplication", "powers", "roots", "square", "taxonomy"], "preamble": {"js": "", "css": ""}, "rulesets": {}, "extensions": [], "functions": {}, "ungrouped_variables": ["x1", "x2", "x3", "x4", "x5", "x", "y2", "y", "ly", "uy"], "statement": "Try the following questions on square and cube numbers.
", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Find the squares, and cubes, of some numbers.
\nFinally, find a square number between two given limits.
"}, "variablesTest": {"condition": "", "maxRuns": "1000"}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}]}]}], "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}]}