// Numbas version: exam_results_page_options {"name": "Factorising Quadratic Equations with $x^2$ Coefficients of 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"preventleave": false, "showfrontpage": false, "allowregen": true}, "question_groups": [{"questions": [{"preamble": {"js": "question.is_factorised = function(part,penalty) {\n penalty = penalty || 0;\n if(part.credit>0) {\n // Parse the student's answer as a syntax tree\n var studentTree = Numbas.jme.compile(part.studentAnswer,Numbas.jme.builtinScope);\n\n // Create the pattern to match against \n // we just want two sets of brackets, each containing two terms\n // or one of the brackets might not have a constant term\n // or for repeated roots, you might write (x+a)^2\n var rule = Numbas.jme.compile('m_all(m_any(x,x+m_pm(m_number),x^m_number,(x+m_pm(m_number))^m_number))*m_nothing');\n\n // Check the student's answer matches the pattern. \n var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n // If not, take away marks\n if(!m) {\n part.multCredit(penalty,'Your answer is not fully factorised.');\n }\n }\n}", "css": ""}, "tags": ["Factorisation", "factorisation", "factorising quadratic equations", "Factorising quadratic equations", "taxonomy"], "variables": {"v6": {"group": "Part A ", "name": "v6", "templateType": "anything", "definition": "-v5", "description": ""}, "v2": {"group": "Part A ", "name": "v2", "templateType": "anything", "definition": "random(2..6 except v1)", "description": ""}, "v4": {"group": "Part A ", "name": "v4", "templateType": "anything", "definition": "random(1..10 except -v3)", "description": ""}, "v3": {"group": "Part A ", "name": "v3", "templateType": "anything", "definition": "random(-8..-1)", "description": ""}, "v1": {"group": "Part A ", "name": "v1", "templateType": "anything", "definition": "random(1..10)", "description": ""}, "v5": {"group": "Part A ", "name": "v5", "templateType": "anything", "definition": "random(2..10)", "description": ""}}, "parts": [{"showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "gaps": [{"showCorrectAnswer": true, "answer": "(x+{v1})(x+{v2})", "customName": "", "marks": 1, "mustmatchpattern": {"nameToCompare": "", "pattern": "(+-x^$n? + +-$n)* * $z", "partialCredit": 0, "message": "Your answer is not fully factorised."}, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "vsetRangePoints": 5, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "useCustomName": false, "type": "jme", "scripts": {}, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "checkingType": "absdiff", "checkingAccuracy": 0.001, "showPreview": true, "unitTests": []}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "marks": 0, "showFeedbackIcon": true, "useCustomName": false, "prompt": "$\\simplify{x^2+{v1+v2}x+{v1*v2}=0}$\n [[0]]$=0$\n ", "scripts": {}, "unitTests": []}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "gaps": [{"showCorrectAnswer": true, "answer": "(x+{v3})(x+{v4})", "customName": "", "marks": 1, "mustmatchpattern": {"nameToCompare": "", "pattern": "(+-x^$n? + +- $n)* *$z", "partialCredit": 0, "message": "Your answer is not fully factorised."}, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "vsetRangePoints": 5, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "useCustomName": false, "type": "jme", "scripts": {}, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "checkingType": "absdiff", "checkingAccuracy": 0.001, "showPreview": true, "unitTests": []}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "marks": 0, "showFeedbackIcon": true, "useCustomName": false, "prompt": "

$\\simplify{x^2+{v3+v4}x+{v3*v4}}=0$

\n

[[0]] $=0$

\n

", "scripts": {}, "unitTests": []}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "gaps": [{"showCorrectAnswer": true, "answer": "(x+{v5})(x+{v6})", "customName": "", "marks": 1, "mustmatchpattern": {"nameToCompare": "", "pattern": "(+-x^$n? + +-$n)* * $z", "partialCredit": 0, "message": " Your answer is not fully factorised. "}, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "vsetRangePoints": 5, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "useCustomName": false, "type": "jme", "scripts": {}, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "checkingType": "absdiff", "checkingAccuracy": 0.001, "showPreview": true, "unitTests": []}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "marks": 0, "showFeedbackIcon": true, "useCustomName": false, "prompt": "$\\simplify{x^2+{v5*v6}}=0$\n [[0]]$=0$", "scripts": {}, "unitTests": []}], "ungrouped_variables": [], "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "extensions": [], "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "statement": " Factorise the following quadratic equations. \n ", "advice": " Quadratic equations of the form \n \$x^2+bx+c=0\$ \n can be factorised to create an equation of the form \n \$(x+m)(x+n)=0\\text{.}\$ \n When we expand a factorised quadratic expression we obtain \n \$(x+m)(x+n)=x^2+(m+n)x+(m \\times n)\\text{.}\$ \n To factorise an equation of the form$x^2+bx+c$, we need to find two numbers which add together to make$b$, and multiply together to make$c$. \n #### a) \n \$\\simplify{x^2+{v1+v2}x+{v1*v2}=0}\$ \n We need to find two values that add together to make$\\var{v1+v2}$and multiply together to make$\\var{v1*v2}. \n \\\begin{align} \\var{v1} \\times \\var{v2}&=\\var{v1*v2}\\\\ \\var{v1}+\\var{v2}&=\\var{v1+v2}\\\\ \\end{align} \ \n So the factorised form of the equation is \n \$\\simplify{(x+{v1})(x+{v2})}=0\\text{.}\$ \n \n #### b) \n We can begin factorising by finding factors of\\var{v3*v4}$that add together to give$\\var{v3+v4}. \n \\\begin{align} \\var{v3} \\times \\var{v4}&=\\var{v3*v4}\\\\ \\var{v3}+\\var{v4}&=\\var{v3+v4}\\\\ \\end{align} \ \n So the factorised form of the equation is \n \$\\simplify{(x+{v3})(x+{v4})}=0\\text{.}\$ \n #### c) \n When factorising the quadratic expression \n \$\\simplify{x^2+{v5*v6}=0}\$ \n we need to find two values that add together to make0$and multiply together to make$\\var{v5*v6}. \n \\begin{align} \\var{v5} \\times \\var{v6}& = \\var{v5*v6}\\\\ \\simplify[]{ {v5} + {v6}} &= 0 \\\\ \\end{align} \n So the factorised form of the equation is \n \$\\simplify{(x+{v5})(x+{v6})}=0\\text{.}\$ ", "variable_groups": [{"name": "Part A ", "variables": ["v1", "v2", "v3", "v4", "v5", "v6"]}], "name": "Factorising Quadratic Equations withx^2$Coefficients of 1", "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": " Factorise three quadratic equations of the form$x^2+bx+c\$.

\n

The first has two negative roots, the second has one negative and one positive, and the third is the difference of two squares.

"}}], "pickingStrategy": "all-ordered"}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}]}