// Numbas version: finer_feedback_settings {"name": "Graphing exponentials of the form y=b^x with 0Graphing exponentials with a base between 0 and 1 and no transformations take place.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The following questions will gauge your understanding of exponentials and how to graph them. 

\n

The exponential you will be working with for this question is \\[y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x.\\]

", "advice": "

Note: if we so desire we can rewrite this exponential with a negative index since $\\left(\\simplify[fractionNumbers]{{b}}\\right)^x=\\left(\\simplify[fractionNumbers]{{1/b}}\\right)^{-x}$.

\n

a) To find the $y$-intercept, substitute $x=0$ into the equation: $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^0=1$. Therefore, the $y$-intercept is the point $(0,1)$.

\n

b) Substitute $x=1$ into the equation: $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^1=\\simplify[fractionNumbers]{{b}}$. Therefore, another easily found point is $\\left(0,\\simplify[fractionNumbers]{{b}}\\right)$.

\n

c) Let's investigate what happens to the value of $y$ when we add 1 to the value of $x$:

\n

\\[\\left(\\simplify[fractionNumbers]{{b}}\\right)^{x+1}=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x\\left(\\simplify[fractionNumbers]{{b}}\\right)^1=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x\\left(\\simplify[fractionNumbers]{{b}}\\right)\\]  That is, the old $y$ value is multiplied by $\\simplify[fractionNumbers]{{b}}$ (which actually decreases the $y$ value since $\\simplify[fractionNumbers]{{b}}<1$).

\n

d) Since $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$ is an exponential and as $x$ increases $y$ decreases to 0, we call this exponential decay.

\n

e) An asymptote is a line or curve that approaches a given curve arbitrarily closely. For the curve $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$ the larger $x$ gets, the closer $y$ gets to $0$. In other words as $x$ approaches infinity, $y$ approaches $0$. This means that the asymptote for $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$ is the line $y=0$ (the $x$-axis).

\n

f) Given all the information above, it should be clear that the graph should look like 

\n

{graph1(1)}

", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1/10,1/5,3/10,2/5,1/2,3/5,7/10,4/5,9/10,1/3,1/4,1/6,1/7,1/8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b"], "variable_groups": [], "functions": {"graph1": {"parameters": [["quad", "number"]], "type": "html", "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('300px','300px',{boundingBox:[-12,12,12,-12],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: false,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: false,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\nb = Numbas.jme.unwrapValue(scope.variables.b);\n\n\n\nif(quad==1){board.create('functiongraph',[function(x){ return Math.pow(b,x)}],{strokeWidth:2});}\nif(quad==2){board.create('functiongraph',[function(x){ return Math.pow(1/b,x)}],{strokeWidth:2});}\nif(quad==3){board.create('functiongraph',[function(x){ return -Math.pow(1/b,x)}],{strokeWidth:2});}\nif(quad==4){board.create('functiongraph',[function(x){ return -Math.pow(b,x)}],{strokeWidth:2});}\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The $y$-intercept of $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$ is the point $\\large($[[0]], [[1]]$\\large)$.

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The $y$-intercept is the point at which the graph intercepts the $y$-axis. The $y$-axis has equation $x=0$ so the $y$-intercept will always have an $x$ value of $0$, and the $y$ value will be the result of substituting $x=0$ into the equation $y=\\left(\\var[fractionnumbers]{b}\\right)^x$.

\n

Substituting $x=0$ gives $y=\\left(\\var[fractionnumbers]{b}\\right)^0=1$ and therefore the $y$-intercept is the point with coordinates $(0,1)$.

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1", "maxValue": "1", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Another easily found point on the curve is ${\\large(}1,$ [[0]]$\\large)$.

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Substituting $x=1$ into $y=\\left(\\var[fractionnumbers]{b}\\right)^x$ gives $y=\\var[fractionnumbers]{b}$. Therefore, $\\left(1,\\var[fractionnumbers]{b}\\right)$ is another point on the curve.

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b}", "maxValue": "{b}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$, everytime $x$ increases by 1, $y$  [[0]].

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When we add $1$ to $x$, the power increases by $1$ and therefore the value of $y$ is multiplied by $\\var[fractionnumbers]{b}$ since $\\left(\\var[fractionnumbers]{b}\\right)^{x+1}=\\left(\\var[fractionnumbers]{b}\\right)^x\\times \\left(\\var[fractionnumbers]{b}\\right)$.

"}], "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": ["

increases by 1.

", "

decreases by 1.

", "

increases by $\\simplify[fractionNumbers]{{b}}$. 

", "

decreases by $\\simplify[fractionNumbers]{{b}}$.

", "

is multiplied by $\\simplify[fractionNumbers]{{b}}$.

", "

is divided by $\\simplify[fractionNumbers]{{b}}$.

"], "matrix": [0, 0, 0, 0, "1", 0], "distractors": ["", "", "", "", "", ""]}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Would $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$ best be described as exponential decay or exponential growth?

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We saw in the last part of the question that as we add $1$ to $x$, the power increases by $1$ and therefore the value of $y$ is multiplied by $\\var[fractionnumbers]{b}$. Since $\\var[fractionnumbers]{b}$ is between $0$ and $1$, this multiplication makes the $y$ value smaller and we have exponential decay. 

"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

exponential growth

", "

exponential decay

"], "matrix": ["0", "1"], "distractors": ["", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The horizontal asymptote of $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$ is $y=$ [[0]].

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The horizontal asymptote is $y=0$ (the $x$-axis).

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Based on the above, which graph best represents $y=\\left(\\simplify[fractionNumbers]{{b}}\\right)^x$?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "2", "showCellAnswerState": true, "choices": ["

{graph1(1)}

", "

{graph1(2)}

", "

{graph1(3)}

", "

{graph1(4)}

"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}