// Numbas version: finer_feedback_settings {"name": "Graphing exponentials with horizontal and vertical transformations and base>1 ", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Graphing exponentials with horizontal and vertical transformations and base>1 ", "tags": [], "metadata": {"description": "
Graphing $y=ab^{\\pm x+d}+c$
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The following questions will gauge your understanding of exponentials and how to graph them.
\nThe exponential you will be working with for this question is \\[y=\\simplify{{a}{b}^({s}x+{d})+{c}}.\\]
", "advice": "a) To find the $y$-intercept, substitute $x=0$ into the equation: $y=\\simplify[!collectNumbers,basic,fractionNumbers]{{a}{b}^{d}+{c}}=\\var[fractionNumbers]{a*b^d+c}$. Therefore, the $y$-intercept is the point $(0,\\var[fractionNumbers]{a*b^d+c})$.
\nb) Substitute $x=\\simplify[fractionNumbers]{{-d/s}}$ into the equation: $y=\\simplify[!collectNumbers, basic]{{a}{b}^0+{c}}=\\var{a+c}$. Therefore, another easily found point is $\\left(\\simplify[fractionNumbers]{{-d/s}},\\var{a+c}\\right)$.
\nc) As $x$ gets larger and larger (increases without bound, or approaches infinity) $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$ gets smaller and smaller (decreases without bound, or approaches negative infinity). larger and larger (increases without bound, or approaches infinity). closer and closer to $\\var{c}$.
\nd) An asymptote is a line or curve that approaches a given curve arbitrarily closely.
\n\nAs $x$ gets very large, $\\simplify{{b}^({s}x+{d})}$ gets close to zero, $\\simplify{{a}{b}^({s}x+{d})}$ gets close to zero, and $\\simplify{{a}{b}^({s}x+{d})+{c}}$ gets close to $\\var{c}$. That is, for the curve $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$ the larger $x$ gets, the closer $y$ gets to $\\var{c}$. In other words as $x$ approaches infinity, $y$ approaches $\\var{c}$. So the asymptote for $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$ is the line $y=\\var{c}$.
\n\nAs $x$ gets very small, $\\simplify{{b}^({s}x+{d})}$ gets close to zero, $\\simplify{{a}{b}^({s}x+{d})}$ gets close to zero, and $\\simplify{{a}{b}^({s}x+{d})+{c}}$ gets close to $\\var{c}$. That is, for the curve $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$ the smaller $x$ gets, the closer $y$ gets to $\\var{c}$. In other words as $x$ approaches negative infinity, $y$ approaches $\\var{c}$. So the asymptote for $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$ is the line $y=\\var{c}$.
\ne) Given all the information above, it should be clear that the graph should look like
\n{graph1(1)}
", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"s": {"name": "s", "group": "Ungrouped variables", "definition": "random(-1,1)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-4..4 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..4 except [0,1,b])", "description": "a
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except [0,a,b])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "a", "c", "d", "s"], "variable_groups": [], "functions": {"graph1": {"parameters": [["quad", "number"]], "type": "html", "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('300px','300px',{boundingBox:[-12,12,12,-12],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: false,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: false,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\na = Numbas.jme.unwrapValue(scope.variables.a);\nb = Numbas.jme.unwrapValue(scope.variables.b);\nc = Numbas.jme.unwrapValue(scope.variables.c);\nd = Numbas.jme.unwrapValue(scope.variables.d);\ns = Numbas.jme.unwrapValue(scope.variables.s);\n\n\n\nif(quad==1){board.create('functiongraph',[function(x){ return a*(Math.pow(b,s*x+d))+c}],{strokeWidth:2});}\nif(quad==2){board.create('functiongraph',[function(x){ return a*(Math.pow(1/b,s*x+d))+c}],{strokeWidth:2});}\nif(quad==3){board.create('functiongraph',[function(x){ return -a*(Math.pow(1/b,s*x+d))+c}],{strokeWidth:2});}\nif(quad==4){board.create('functiongraph',[function(x){ return -a*(Math.pow(b,s*x+d))+c}],{strokeWidth:2});}\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The $y$-intercept of $y=\\simplify[!noleadingminus]{{a}{b}^({s}x+{d})+{c}}$ is the point $\\large($[[0]], [[1]]$\\large)$.
", "stepsPenalty": "2", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The $y$-intercept is the point at which the graph intercepts the $y$-axis. The $y$-axis has equation $x=0$ so the $y$-intercept will always have an $x$ value of $0$, and the $y$ value will be the result of substituting $x=0$ into the equation $y=\\simplify[!noleadingminus]{{a}{b}^({s}x+{d})+{c}}$.
\nSubstituting $x=0$ gives
\\begin{align}y&=\\simplify[!collectnumbers,!noleadingminus]{{a}{b}^({d})+{c}}\\\\&=\\simplify[fractionnumbers]{{a*b^d}+{c}}\\\\&=\\simplify[fractionnumbers]{{a*b^d+c}}\\end{align} and therefore the $y$-intercept is the point with coordinates $(0,\\var[fractionnumbers]{a*b^d+c})$.
Another important point on the curve is ${\\large(}\\simplify[fractionNumbers]{{-d/s}},$ [[0]]$\\large)$.
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Substituting $x=1$ into $y=\\simplify[!noleadingminus]{{a}{b}^({s}x+{d})+{c}}$:
\n\\begin{align}y&=\\simplify[!collectnumbers, !noleadingminus]{{a}{b}^({s}+{d})+{c}}\\\\&=\\simplify[fractionnumbers]{{a*b^(s+d)}+{c}}\\\\&=\\simplify[fractionnumbers]{{a*b^(s+d)+c}}\\end{align}
\nTherefore, $(1,\\simplify[fractionnumbers]{{a*b^(s+d)+c}})$ is another point on the curve.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a+c}", "maxValue": "{a+c}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "As $x$ increases without bound,
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Since $\\var{b}$ is greater than $1$, as $x$ increases, the value of $\\var{b}^x$ grows exponentially, however, $\\var{b}^{-x}$ decays exponentially to $0$. Therefore, $\\simplify[!noleadingminus, all]{{a}{b}^({s}x+{d})+{c}}$ approaches $\\var{c}$. Furthermore, since $\\var{a}$ is positive, $y=\\simplify[!noleadingminus, all]{{a}{b}^({s}x+{d})+{c}}$ increases without bound. Furthermore, since $\\var{a}$ is negative, $y=\\simplify[!noleadingminus, all]{{a}{b}^({s}x+{d})+{c}}$ decreases without bound.Furthermore, since $\\var{a}$ is positive, $y=\\simplify[!noleadingminus, all]{{a}{b}^({s}x+{d})+{c}}$ approaches $\\var{c}$ from above. Furthermore, since $\\var{a}$ is negative, $y=\\simplify[!noleadingminus, all]{{a}{b}^({s}x+{d})+{c}}$ approaches $\\var{c}$ from below.
\n"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": ["$y$ increases without bound.
", "$y$ decreases without bound.
", "$y$ approaches $\\var{c}$.
"], "matrix": ["if(s>0 and a>0,1,0)", "if(s>0 and a<0,1,0)", "if(s<0,1,0)"], "distractors": ["", "", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The horizontal asymptote of $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$ is $y=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The horizontal asymptote is $y=\\var{c}$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{c}", "maxValue": "{c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Based on the above, which graph best represents $y=\\simplify{{a}{b}^({s}x+{d})+{c}}$?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "2", "showCellAnswerState": true, "choices": ["{graph1(1)}
", "{graph1(2)}
", "{graph1(3)}
", "{graph1(4)}
"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}